Structural characterization of rapid thermal oxidized Si1−x−yGexCy alloy films grown by rapid thermal chemical vapor deposition

Choi, W. K. ; Chen, J. H. ; Bera, L. K. ; Feng, W. ; Pey, K. L.

[S.l.] : American Institute of Physics (AIP)
Published 2000
ISSN:
1089-7550
Source:
AIP Digital Archive
Topics:
Physics
Notes:
The structural properties of as-grown and rapid thermal oxidized Si1−x−yGexCy epitaxial layers have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction, secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into the Si1−x−yGexCy system can lead to compressive or tensile strain in the film. The structural properties of the oxidized Si1−x−yGexCy film depend on the type of strain (i.e., carbon concentration) of the as-prepared film. For compressive or fully compensated films, the oxidation process drastically reduces the carbon content so that the oxidized films closely resemble to Si1−xGex films. For tensile films, two broad regions, one with carbon content higher and the other lower than that required for full strain compensation, coexist in the oxidized films. © 2000 American Institute of Physics.
Type of Medium:
Electronic Resource
URL: