Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles

Turnbull, M. H. ; Tissue, D. T. ; Griffin, K. L. ; Rogers, G. N. D. ; Whitehead, D.

Oxford, UK : Blackwell Publishing Ltd
Published 1998
ISSN:
1365-3040
Source:
Blackwell Publishing Journal Backfiles 1879-2005
Topics:
Biology
Notes:
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
Type of Medium:
Electronic Resource
URL:
_version_ 1798290229064368129
autor Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
autorsonst Rogers, G. N. D.
Whitehead, D.
book_url http://dx.doi.org/10.1046/j.1365-3040.1998.00374.x
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLZ243847963
insertion_date 2012-04-27
issn 1365-3040
journal_name Plant, cell & environment
materialart 1
notes The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
package_name Blackwell Publishing
publikationsjahr_anzeige 1998
publikationsjahr_facette 1998
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1998
publikationsort Oxford, UK
publisher Blackwell Publishing Ltd
reference 21 (1998), S. 0
search_space articles
shingle_author_1 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
shingle_author_2 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
shingle_author_3 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
shingle_author_4 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
shingle_catch_all_1 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
Blackwell Publishing Ltd
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
1365-3040
13653040
shingle_catch_all_2 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
Blackwell Publishing Ltd
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
1365-3040
13653040
shingle_catch_all_3 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
Blackwell Publishing Ltd
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
1365-3040
13653040
shingle_catch_all_4 Turnbull, M. H.
Tissue, D. T.
Griffin, K. L.
Rogers, G. N. D.
Whitehead, D.
Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
Blackwell Publishing Ltd
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.
1365-3040
13653040
shingle_title_1 Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
shingle_title_2 Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
shingle_title_3 Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
shingle_title_4 Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
source_archive Blackwell Publishing Journal Backfiles 1879-2005
timestamp 2024-05-06T08:13:22.949Z
titel Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
titel_suche Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles
topic W
uid nat_lic_papers_NLZ243847963