Effect of the Interfacial Transition Zone on the Conductivity of Portland Cement Mortars

Shane, John D. ; Mason, Thomas O. ; Jennings, Hamlin M. ; Garboczi, Edward J. ; Bentz, Dale P.

Westerville, Ohio : American Ceramics Society
Published 2000
ISSN:
1551-2916
Source:
Blackwell Publishing Journal Backfiles 1879-2005
Topics:
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
Notes:
The electrical conductivity of portland cement mortars was determined experimentally as a function of the volume fraction of sand and the degree of hydration. The results were analyzed using theoretical models that represent the mortars as three-phase, interactive composites. The three phases are the matrix paste, the aggregate, and the thin interfacial transition zone between the two. The microstructure and properties of the conductive phases (the transition zone and the matrix paste) were determined by a micrometer-scale microstructural model, and were used in conjunction with random-walk algorithms and differential-effective medium theory to determine the overall mortar conductivities. The presence of the transition zone was not found to significantly affect the global electrical conductivity of the mortar. However, there were significant differences in conductivity between the transition zone and matrix pastes when examined on a local level. These differences were found to vary with hydration and were most significant when the degree of hydration was between 0.5 and 0.8.
Type of Medium:
Electronic Resource
URL: