Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure

Day, T. A. ; Vogelmann, T. C.

Oxford, UK : Blackwell Publishing Ltd
Published 1995
ISSN:
1399-3054
Source:
Blackwell Publishing Journal Backfiles 1879-2005
Topics:
Biology
Notes:
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
Type of Medium:
Electronic Resource
URL:
_version_ 1798290260934787072
autor Day, T. A.
Vogelmann, T. C.
book_url http://dx.doi.org/10.1111/j.1399-3054.1995.tb00950.x
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLZ240938860
insertion_date 2012-04-26
issn 1399-3054
journal_name Physiologia plantarum
materialart 1
notes We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
package_name Blackwell Publishing
publikationsjahr_anzeige 1995
publikationsjahr_facette 1995
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1995
publikationsort Oxford, UK
publisher Blackwell Publishing Ltd
reference 94 (1995), S. 0
search_space articles
shingle_author_1 Day, T. A.
Vogelmann, T. C.
shingle_author_2 Day, T. A.
Vogelmann, T. C.
shingle_author_3 Day, T. A.
Vogelmann, T. C.
shingle_author_4 Day, T. A.
Vogelmann, T. C.
shingle_catch_all_1 Day, T. A.
Vogelmann, T. C.
Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
Blackwell Publishing Ltd
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
1399-3054
13993054
shingle_catch_all_2 Day, T. A.
Vogelmann, T. C.
Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
Blackwell Publishing Ltd
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
1399-3054
13993054
shingle_catch_all_3 Day, T. A.
Vogelmann, T. C.
Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
Blackwell Publishing Ltd
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
1399-3054
13993054
shingle_catch_all_4 Day, T. A.
Vogelmann, T. C.
Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
Blackwell Publishing Ltd
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m−2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.
1399-3054
13993054
shingle_title_1 Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
shingle_title_2 Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
shingle_title_3 Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
shingle_title_4 Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
source_archive Blackwell Publishing Journal Backfiles 1879-2005
timestamp 2024-05-06T08:13:53.634Z
titel Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
titel_suche Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure
topic W
uid nat_lic_papers_NLZ240938860