ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS

Stone, E. A.

Oxford, UK : Blackwell Publishing Ltd
Published 1973
ISSN:
1471-4159
Source:
Blackwell Publishing Journal Backfiles 1879-2005
Topics:
Medicine
Notes:
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
Type of Medium:
Electronic Resource
URL:
_version_ 1798289999660056576
autor Stone, E. A.
book_url http://dx.doi.org/10.1111/j.1471-4159.1973.tb06004.x
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLZ240356543
insertion_date 2012-04-26
issn 1471-4159
journal_name Journal of neurochemistry
materialart 1
notes —Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
package_name Blackwell Publishing
publikationsjahr_anzeige 1973
publikationsjahr_facette 1973
publikationsjahr_intervall 8029:1970-1974
publikationsjahr_sort 1973
publikationsort Oxford, UK
publisher Blackwell Publishing Ltd
reference 21 (1973), S. 0
search_space articles
shingle_author_1 Stone, E. A.
shingle_author_2 Stone, E. A.
shingle_author_3 Stone, E. A.
shingle_author_4 Stone, E. A.
shingle_catch_all_1 Stone, E. A.
ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
Blackwell Publishing Ltd
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
1471-4159
14714159
shingle_catch_all_2 Stone, E. A.
ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
Blackwell Publishing Ltd
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
1471-4159
14714159
shingle_catch_all_3 Stone, E. A.
ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
Blackwell Publishing Ltd
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
1471-4159
14714159
shingle_catch_all_4 Stone, E. A.
ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
Blackwell Publishing Ltd
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston, 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.
1471-4159
14714159
shingle_title_1 ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
shingle_title_2 ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
shingle_title_3 ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
shingle_title_4 ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
source_archive Blackwell Publishing Journal Backfiles 1879-2005
timestamp 2024-05-06T08:09:46.112Z
titel ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
titel_suche ACCUMULATION AND METABOLISM OF NOREPINE-PHRINE IN RAT HYPOTHALAMUS AFTER EXHAUSTIVE STRESS
topic WW-YZ
uid nat_lic_papers_NLZ240356543