Theoretical study of electron transport in gallium nitride

Mansour, N. S. ; Kim, K. W. ; Littlejohn, M. A.

[S.l.] : American Institute of Physics (AIP)
Published 1995
ISSN:
1089-7550
Source:
AIP Digital Archive
Topics:
Physics
Notes:
This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
Type of Medium:
Electronic Resource
URL:
_version_ 1798289650748489729
autor Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
autorsonst Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
book_url http://dx.doi.org/10.1063/1.358696
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLZ218538960
iqvoc_descriptor_title iqvoc_00000124:transport
issn 1089-7550
journal_name Journal of Applied Physics
materialart 1
notes This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
package_name American Institute of Physics (AIP)
publikationsjahr_anzeige 1995
publikationsjahr_facette 1995
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1995
publikationsort [S.l.]
publisher American Institute of Physics (AIP)
reference 77 (1995), S. 2834-2836
search_space articles
shingle_author_1 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
shingle_author_2 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
shingle_author_3 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
shingle_author_4 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
shingle_catch_all_1 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
Theoretical study of electron transport in gallium nitride
This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
1089-7550
10897550
American Institute of Physics (AIP)
shingle_catch_all_2 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
Theoretical study of electron transport in gallium nitride
This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
1089-7550
10897550
American Institute of Physics (AIP)
shingle_catch_all_3 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
Theoretical study of electron transport in gallium nitride
This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
1089-7550
10897550
American Institute of Physics (AIP)
shingle_catch_all_4 Mansour, N. S.
Kim, K. W.
Littlejohn, M. A.
Theoretical study of electron transport in gallium nitride
This paper describes characteristic electron transport properties for GaN in bulk and quantum well structures. First, ensemble Monte Carlo calculations of steady-state electron drift velocity in bulk GaN are presented as a function of applied electric field for different lattice temperatures. At 300 K, the calculated peak steady-state drift velocity is 2.8×107 cm/s and the threshold field is 160 kV/cm. It is found that the peak steady-state electron drift velocity decreases only slightly by about 20% as the temperature increases from 300 to 600 K while the threshold field increases slightly by about 20%. Therefore, in addition to its high temperature stability, GaN has a low temperature coefficient making it ideal for high temperature applications. For electron transport in heterostructures, quantum mechanical calculations of the electron capture rate in GaN-based quantum wells as a function of well thickness are also presented. An oscillatory behavior of the electron capture rate as a function of quantum well thickness is observed. It is found that the electron capture time oscillates between 2 and 30 ps, which is about an order of magnitude greater than capture times in GaAs quantum wells. The amplitude of oscillations decreased as the well thickness increased. These results suggest that electron transport and carrier collection in GaN are efficient processes for improved electronic and optoelectronic devices. © 1995 American Institute of Physics.
1089-7550
10897550
American Institute of Physics (AIP)
shingle_title_1 Theoretical study of electron transport in gallium nitride
shingle_title_2 Theoretical study of electron transport in gallium nitride
shingle_title_3 Theoretical study of electron transport in gallium nitride
shingle_title_4 Theoretical study of electron transport in gallium nitride
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
source_archive AIP Digital Archive
timestamp 2024-05-06T08:04:13.170Z
titel Theoretical study of electron transport in gallium nitride
titel_suche Theoretical study of electron transport in gallium nitride
topic U
uid nat_lic_papers_NLZ218538960