Epitaxial NaCl structure δ-TaNx(001): Electronic transport properties, elastic modulus, and hardness versus N/Ta ratio
Shin, C.-S. ; Gall, D. ; Kim, Y.-W. ; Desjardins, P. ; Petrov, I. ; Greene, J. E.
[S.l.] : American Institute of Physics (AIP)
Published 2001
[S.l.] : American Institute of Physics (AIP)
Published 2001
ISSN: |
1089-7550
|
---|---|
Source: |
AIP Digital Archive
|
Topics: |
Physics
|
Notes: |
While metastable B1-NaCl-structure δ-TaNx is presently used in a variety of hard coating, wear-resistant, and diffusion barrier applications, it is a complex material exhibiting a wide single-phase field, x(similar, equals)0.94–1.37, and little is known about its fundamental properties. Here, we report physical properties of epitaxial δ-TaNx layers grown as a function of x on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. The room-temperature resistivity (ρ=225 μΩ cm), hardness (H=30.9 GPa), and elastic modulus (E=455 GPa) of δ-TaNx(001) are independent of x over the range 0.94–1.22. However, changes in the electronic structure associated with increasing x〉1.22 lead to an increase in ρ with a decrease in H and E. All δ-TaNx(001) layers exhibit negative temperature coefficients of resistivity between 20 and 400 K due to weak carrier localization. δ-TaNx is superconducting with the highest critical temperature, 8.45 K, obtained for layers with the lowest N/Ta ratio, x=0.94. Based upon the above results, combined with the fact that the relaxed lattice constant a0 shows only a very weak dependence on x, we propose that the wide phase field in δ-TaNx is due primarily to antisite substitutions of Ta on N (and N on Ta) sites, rather than to cation and anion vacancies. To first order, antisite substitutions in TaNx are isoelectronic and hence have little effect on charge carrier density. At sufficiently high N/Ta ratios, however, simple electron-counting arguments are no longer valid since large deviations from stoichiometry alter the character of the band structure itself. © 2001 American Institute of Physics.
|
Type of Medium: |
Electronic Resource
|
URL: |