Nonstationary random vibrations of yielding multi-degree-of-freedom systems: Method of effective envelope functions

Irschik, H.
Springer
Published 1986
ISSN:
1619-6937
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
Notes:
Summary This paper is concerned with non-stationary random vibrations of yielding shear-wall buildings approximated by multi-degree-of-freedom elastic-plastic oscillators in the plastic hinge model. The initial strain formulation of plasticity is applied to render a linear system under effective and updated non-stationary random loading: Noting the complete analogy to a linear system driven by the earthquake excited ground acceleration as well as by the nonlinear drift processes, the excitation of the totally associated linear problem is alternated by assuming the power spectral density of the input to be given in the form of an effective envelope function including frequency dependence. This fictitious evolutionary excitation of the linear system with fixed stiffness and damping behaviour is taken into account using a time-stepping procedure.
Type of Medium:
Electronic Resource
URL: