The PiGMaP consortium linkage map of the pig (Sus scrofa)

ISSN:
1432-1777
Source:
Springer Online Journal Archives 1860-2000
Topics:
Biology
Medicine
Notes:
Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
Type of Medium:
Electronic Resource
URL:
_version_ 1798297660999860224
autor Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
autorsonst Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
book_url http://dx.doi.org/10.1007/BF00293008
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM207330131
issn 1432-1777
journal_name Mammalian genome
materialart 1
notes Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
package_name Springer
publikationsjahr_anzeige 1995
publikationsjahr_facette 1995
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1995
publisher Springer
reference 6 (1995), S. 157-175
search_space articles
shingle_author_1 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
shingle_author_2 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
shingle_author_3 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
shingle_author_4 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
shingle_catch_all_1 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
The PiGMaP consortium linkage map of the pig (Sus scrofa)
Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
1432-1777
14321777
Springer
shingle_catch_all_2 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
The PiGMaP consortium linkage map of the pig (Sus scrofa)
Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
1432-1777
14321777
Springer
shingle_catch_all_3 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
The PiGMaP consortium linkage map of the pig (Sus scrofa)
Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
1432-1777
14321777
Springer
shingle_catch_all_4 Archibald, A. L.
Haley, C. S.
Brown, J. F.
Couperwhite, S.
McQueen, H. A.
Nicholson, D.
Coppieters, W.
Weghe, A.
Stratil, A.
Winterø, A. K.
Fredholm, M.
Larsen, N. J.
Nielsen, V. H.
Milan, D.
Woloszyn, N.
Robic, A.
Dalens, M.
Riquet, J.
Gellin, J.
Caritez, J. -C.
Burgaud, G.
Ollivier, L.
Bidanel, J. -P.
Vaiman, M.
Renard, C.
The PiGMaP consortium linkage map of the pig (Sus scrofa)
Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
1432-1777
14321777
Springer
shingle_title_1 The PiGMaP consortium linkage map of the pig (Sus scrofa)
shingle_title_2 The PiGMaP consortium linkage map of the pig (Sus scrofa)
shingle_title_3 The PiGMaP consortium linkage map of the pig (Sus scrofa)
shingle_title_4 The PiGMaP consortium linkage map of the pig (Sus scrofa)
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T10:11:32.252Z
titel The PiGMaP consortium linkage map of the pig (Sus scrofa)
titel_suche The PiGMaP consortium linkage map of the pig (Sus scrofa)
topic W
WW-YZ
uid nat_lic_papers_NLM207330131