The origin and function of self-incompatibility in flowering plants

Olmstead, R. G.
Springer
Published 1989
ISSN:
1432-2145
Keywords:
Self-incompatibility ; Breeding systems ; Population structure
Source:
Springer Online Journal Archives 1860-2000
Topics:
Biology
Notes:
Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
Type of Medium:
Electronic Resource
URL:
_version_ 1798295947310006272
autor Olmstead, R. G.
autorsonst Olmstead, R. G.
book_url http://dx.doi.org/10.1007/BF00192758
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM206006721
issn 1432-2145
journal_name Sexual plant reproduction
materialart 1
notes Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
package_name Springer
publikationsjahr_anzeige 1989
publikationsjahr_facette 1989
publikationsjahr_intervall 8014:1985-1989
publikationsjahr_sort 1989
publisher Springer
reference 2 (1989), S. 127-136
schlagwort Self-incompatibility
Breeding systems
Population structure
search_space articles
shingle_author_1 Olmstead, R. G.
shingle_author_2 Olmstead, R. G.
shingle_author_3 Olmstead, R. G.
shingle_author_4 Olmstead, R. G.
shingle_catch_all_1 Olmstead, R. G.
The origin and function of self-incompatibility in flowering plants
Self-incompatibility
Breeding systems
Population structure
Self-incompatibility
Breeding systems
Population structure
Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
1432-2145
14322145
Springer
shingle_catch_all_2 Olmstead, R. G.
The origin and function of self-incompatibility in flowering plants
Self-incompatibility
Breeding systems
Population structure
Self-incompatibility
Breeding systems
Population structure
Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
1432-2145
14322145
Springer
shingle_catch_all_3 Olmstead, R. G.
The origin and function of self-incompatibility in flowering plants
Self-incompatibility
Breeding systems
Population structure
Self-incompatibility
Breeding systems
Population structure
Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
1432-2145
14322145
Springer
shingle_catch_all_4 Olmstead, R. G.
The origin and function of self-incompatibility in flowering plants
Self-incompatibility
Breeding systems
Population structure
Self-incompatibility
Breeding systems
Population structure
Summary The evolutionary significance of self-incompatibility (SI) traditionally has been linked to reduced inbreeding through enforced outcrossing. This view is founded on the premise that outcrossing reduces inbreeding. It is important, when considering the evolutionary significance of any genetic system, to try to distinguish those factors related to the evolution of, from those related to the maintenance of, the system in question. Three factors are considered important for the maintenance of SI: (1) phylogenetic constraint in species descended from SI ancestors, (2) reduced inbreeding in populations, and (3) fitness benefits to individuals resulting from the avoidance of selfing. I suggest that the first two factors should be rejected when considering the origin of SI (whether one or more origins are hypothesized) and that the increase in individual fitness resulting from the avoidance of self-fertilization among individuals that are heterozygous for deleterious alleles may be sufficient to account for the origin of SI. Self-fertilization in plants (except in species that predominantly self-fertilize) generally results in a reduction in fitness of some individuals due to the increased expression of deleterious or lethal recessive alleles, regardless of the degree of inbreeding in the population or the frequency of the allele in question. Inbreeding is a consequence of population structure in many outcrossing plant species. Complex (multi-locus and multi-allelic) systems of SI exist that reduce inbreeding. However, it is argued that these are derived either from simpler systems of SI that may have very little or no effect on inbreeding, in which case any effect on level of inbreeding is secondary, or are not true self-incompatibility systems and are part of a regulatory system that serves to balance the level of inbreeding and outbreeding. Multi-locus and multi-allelic systems of SI and heteromorphic systems of SI are discussed in terms of derived versus ancestral characteristics. A reassessment of the role of breeding systems in the development of a population structure promoting inbreeding is suggested, which may have been of crucial importance in the success and diversification of angiosperms.
1432-2145
14322145
Springer
shingle_title_1 The origin and function of self-incompatibility in flowering plants
shingle_title_2 The origin and function of self-incompatibility in flowering plants
shingle_title_3 The origin and function of self-incompatibility in flowering plants
shingle_title_4 The origin and function of self-incompatibility in flowering plants
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:44:17.901Z
titel The origin and function of self-incompatibility in flowering plants
titel_suche The origin and function of self-incompatibility in flowering plants
topic W
uid nat_lic_papers_NLM206006721