Stochastic cascades and 3-dimensional Navier–Stokes equations

Jan, Y. Le ; Sznitman, A. S.
Springer
Published 1997
ISSN:
1432-2064
Keywords:
AMS Subject Classification (1991): 60J80 ; 35Q30
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mathematics
Notes:
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
Type of Medium:
Electronic Resource
URL:
_version_ 1798295926935126016
autor Jan, Y. Le
Sznitman, A. S.
autorsonst Jan, Y. Le
Sznitman, A. S.
book_url http://dx.doi.org/10.1007/s004400050135
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM20565570X
issn 1432-2064
journal_name Probability theory and related fields
materialart 1
notes Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
package_name Springer
publikationsjahr_anzeige 1997
publikationsjahr_facette 1997
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1997
publisher Springer
reference 109 (1997), S. 343-366
schlagwort AMS Subject Classification (1991): 60J80
35Q30
search_space articles
shingle_author_1 Jan, Y. Le
Sznitman, A. S.
shingle_author_2 Jan, Y. Le
Sznitman, A. S.
shingle_author_3 Jan, Y. Le
Sznitman, A. S.
shingle_author_4 Jan, Y. Le
Sznitman, A. S.
shingle_catch_all_1 Jan, Y. Le
Sznitman, A. S.
Stochastic cascades and 3-dimensional Navier–Stokes equations
AMS Subject Classification (1991): 60J80
35Q30
AMS Subject Classification (1991): 60J80
35Q30
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
1432-2064
14322064
Springer
shingle_catch_all_2 Jan, Y. Le
Sznitman, A. S.
Stochastic cascades and 3-dimensional Navier–Stokes equations
AMS Subject Classification (1991): 60J80
35Q30
AMS Subject Classification (1991): 60J80
35Q30
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
1432-2064
14322064
Springer
shingle_catch_all_3 Jan, Y. Le
Sznitman, A. S.
Stochastic cascades and 3-dimensional Navier–Stokes equations
AMS Subject Classification (1991): 60J80
35Q30
AMS Subject Classification (1991): 60J80
35Q30
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
1432-2064
14322064
Springer
shingle_catch_all_4 Jan, Y. Le
Sznitman, A. S.
Stochastic cascades and 3-dimensional Navier–Stokes equations
AMS Subject Classification (1991): 60J80
35Q30
AMS Subject Classification (1991): 60J80
35Q30
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
1432-2064
14322064
Springer
shingle_title_1 Stochastic cascades and 3-dimensional Navier–Stokes equations
shingle_title_2 Stochastic cascades and 3-dimensional Navier–Stokes equations
shingle_title_3 Stochastic cascades and 3-dimensional Navier–Stokes equations
shingle_title_4 Stochastic cascades and 3-dimensional Navier–Stokes equations
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:43:58.229Z
titel Stochastic cascades and 3-dimensional Navier–Stokes equations
titel_suche Stochastic cascades and 3-dimensional Navier–Stokes equations
topic SA-SP
uid nat_lic_papers_NLM20565570X