Stochastic cascades and 3-dimensional Navier–Stokes equations
ISSN: |
1432-2064
|
---|---|
Keywords: |
AMS Subject Classification (1991): 60J80 ; 35Q30
|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mathematics
|
Notes: |
Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven.
|
Type of Medium: |
Electronic Resource
|
URL: |
_version_ | 1798295926935126016 |
---|---|
autor | Jan, Y. Le Sznitman, A. S. |
autorsonst | Jan, Y. Le Sznitman, A. S. |
book_url | http://dx.doi.org/10.1007/s004400050135 |
datenlieferant | nat_lic_papers |
hauptsatz | hsatz_simple |
identnr | NLM20565570X |
issn | 1432-2064 |
journal_name | Probability theory and related fields |
materialart | 1 |
notes | Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven. |
package_name | Springer |
publikationsjahr_anzeige | 1997 |
publikationsjahr_facette | 1997 |
publikationsjahr_intervall | 8004:1995-1999 |
publikationsjahr_sort | 1997 |
publisher | Springer |
reference | 109 (1997), S. 343-366 |
schlagwort | AMS Subject Classification (1991): 60J80 35Q30 |
search_space | articles |
shingle_author_1 | Jan, Y. Le Sznitman, A. S. |
shingle_author_2 | Jan, Y. Le Sznitman, A. S. |
shingle_author_3 | Jan, Y. Le Sznitman, A. S. |
shingle_author_4 | Jan, Y. Le Sznitman, A. S. |
shingle_catch_all_1 | Jan, Y. Le Sznitman, A. S. Stochastic cascades and 3-dimensional Navier–Stokes equations AMS Subject Classification (1991): 60J80 35Q30 AMS Subject Classification (1991): 60J80 35Q30 Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven. 1432-2064 14322064 Springer |
shingle_catch_all_2 | Jan, Y. Le Sznitman, A. S. Stochastic cascades and 3-dimensional Navier–Stokes equations AMS Subject Classification (1991): 60J80 35Q30 AMS Subject Classification (1991): 60J80 35Q30 Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven. 1432-2064 14322064 Springer |
shingle_catch_all_3 | Jan, Y. Le Sznitman, A. S. Stochastic cascades and 3-dimensional Navier–Stokes equations AMS Subject Classification (1991): 60J80 35Q30 AMS Subject Classification (1991): 60J80 35Q30 Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven. 1432-2064 14322064 Springer |
shingle_catch_all_4 | Jan, Y. Le Sznitman, A. S. Stochastic cascades and 3-dimensional Navier–Stokes equations AMS Subject Classification (1991): 60J80 35Q30 AMS Subject Classification (1991): 60J80 35Q30 Summary. In this article, we study the incompressible Navier–Stokes equations in ℝ3. The non linear integral equation satisfied by the Fourier transform of the Laplacian of the velocity field can be interpreted in terms of a branching process and a composition rule along the associated tree. We derive from this representation new classes where global existence and uniqueness can be proven. 1432-2064 14322064 Springer |
shingle_title_1 | Stochastic cascades and 3-dimensional Navier–Stokes equations |
shingle_title_2 | Stochastic cascades and 3-dimensional Navier–Stokes equations |
shingle_title_3 | Stochastic cascades and 3-dimensional Navier–Stokes equations |
shingle_title_4 | Stochastic cascades and 3-dimensional Navier–Stokes equations |
sigel_instance_filter | dkfz geomar wilbert ipn albert fhp |
source_archive | Springer Online Journal Archives 1860-2000 |
timestamp | 2024-05-06T09:43:58.229Z |
titel | Stochastic cascades and 3-dimensional Navier–Stokes equations |
titel_suche | Stochastic cascades and 3-dimensional Navier–Stokes equations |
topic | SA-SP |
uid | nat_lic_papers_NLM20565570X |