Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions

ISSN:
1439-6327
Keywords:
Aldosterone ; Plasma volume ; Osmolality ; Sodium ; Heart rate
Source:
Springer Online Journal Archives 1860-2000
Topics:
Medicine
Notes:
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
Type of Medium:
Electronic Resource
URL:
_version_ 1798297418623614978
autor Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
autorsonst Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
book_url http://dx.doi.org/10.1007/BF00236059
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM204510724
issn 1439-6327
journal_name European journal of applied physiology
materialart 1
notes Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
package_name Springer
publikationsjahr_anzeige 1990
publikationsjahr_facette 1990
publikationsjahr_intervall 8009:1990-1994
publikationsjahr_sort 1990
publisher Springer
reference 61 (1990), S. 398-407
schlagwort Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
search_space articles
shingle_author_1 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
shingle_author_2 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
shingle_author_3 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
shingle_author_4 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
shingle_catch_all_1 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
1439-6327
14396327
Springer
shingle_catch_all_2 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
1439-6327
14396327
Springer
shingle_catch_all_3 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
1439-6327
14396327
Springer
shingle_catch_all_4 Schmidt, W.
Brabant, G.
Kröger, C.
Strauch, S.
Hilgendorf, A.
Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Aldosterone
Plasma volume
Osmolality
Sodium
Heart rate
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (−28.5%, SEM 3.7% after 30 min, P〈0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV −13.1%, SD 3.6%, sodium +6.2 mmol·1−1, SD 2.7, Osm +18.4 mosmol·kg H2O−1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].
1439-6327
14396327
Springer
shingle_title_1 Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
shingle_title_2 Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
shingle_title_3 Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
shingle_title_4 Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T10:07:40.477Z
titel Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
titel_suche Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions
topic WW-YZ
uid nat_lic_papers_NLM204510724