Zagier's conjecture on L(E,2)

Goncharov, A. B. ; Levin, A. M.
Springer
Published 1998
ISSN:
1432-1297
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mathematics
Notes:
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
Type of Medium:
Electronic Resource
URL:
_version_ 1798295646532272130
autor Goncharov, A. B.
Levin, A. M.
autorsonst Goncharov, A. B.
Levin, A. M.
book_url http://dx.doi.org/10.1007/s002220050228
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM202318540
issn 1432-1297
journal_name Inventiones mathematicae
materialart 1
notes Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
package_name Springer
publikationsjahr_anzeige 1998
publikationsjahr_facette 1998
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1998
publisher Springer
reference 132 (1998), S. 393-432
search_space articles
shingle_author_1 Goncharov, A. B.
Levin, A. M.
shingle_author_2 Goncharov, A. B.
Levin, A. M.
shingle_author_3 Goncharov, A. B.
Levin, A. M.
shingle_author_4 Goncharov, A. B.
Levin, A. M.
shingle_catch_all_1 Goncharov, A. B.
Levin, A. M.
Zagier's conjecture on L(E,2)
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
1432-1297
14321297
Springer
shingle_catch_all_2 Goncharov, A. B.
Levin, A. M.
Zagier's conjecture on L(E,2)
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
1432-1297
14321297
Springer
shingle_catch_all_3 Goncharov, A. B.
Levin, A. M.
Zagier's conjecture on L(E,2)
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
1432-1297
14321297
Springer
shingle_catch_all_4 Goncharov, A. B.
Levin, A. M.
Zagier's conjecture on L(E,2)
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
1432-1297
14321297
Springer
shingle_title_1 Zagier's conjecture on L(E,2)
shingle_title_2 Zagier's conjecture on L(E,2)
shingle_title_3 Zagier's conjecture on L(E,2)
shingle_title_4 Zagier's conjecture on L(E,2)
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:39:31.153Z
titel Zagier's conjecture on L(E,2)
titel_suche Zagier's conjecture on L(E,2)
topic SA-SP
uid nat_lic_papers_NLM202318540