Zagier's conjecture on L(E,2)
ISSN: |
1432-1297
|
---|---|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mathematics
|
Notes: |
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ.
|
Type of Medium: |
Electronic Resource
|
URL: |
_version_ | 1798295646532272130 |
---|---|
autor | Goncharov, A. B. Levin, A. M. |
autorsonst | Goncharov, A. B. Levin, A. M. |
book_url | http://dx.doi.org/10.1007/s002220050228 |
datenlieferant | nat_lic_papers |
hauptsatz | hsatz_simple |
identnr | NLM202318540 |
issn | 1432-1297 |
journal_name | Inventiones mathematicae |
materialart | 1 |
notes | Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ. |
package_name | Springer |
publikationsjahr_anzeige | 1998 |
publikationsjahr_facette | 1998 |
publikationsjahr_intervall | 8004:1995-1999 |
publikationsjahr_sort | 1998 |
publisher | Springer |
reference | 132 (1998), S. 393-432 |
search_space | articles |
shingle_author_1 | Goncharov, A. B. Levin, A. M. |
shingle_author_2 | Goncharov, A. B. Levin, A. M. |
shingle_author_3 | Goncharov, A. B. Levin, A. M. |
shingle_author_4 | Goncharov, A. B. Levin, A. M. |
shingle_catch_all_1 | Goncharov, A. B. Levin, A. M. Zagier's conjecture on L(E,2) Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ. 1432-1297 14321297 Springer |
shingle_catch_all_2 | Goncharov, A. B. Levin, A. M. Zagier's conjecture on L(E,2) Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ. 1432-1297 14321297 Springer |
shingle_catch_all_3 | Goncharov, A. B. Levin, A. M. Zagier's conjecture on L(E,2) Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ. 1432-1297 14321297 Springer |
shingle_catch_all_4 | Goncharov, A. B. Levin, A. M. Zagier's conjecture on L(E,2) Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K 2(E) and K 1(E) for an elliptic curve E over an arbitrary field k. Combining this with the results of Bloch and Beilinson we proved Zagier's conjecture on L(E,2) for modular elliptic curves over ℚ. 1432-1297 14321297 Springer |
shingle_title_1 | Zagier's conjecture on L(E,2) |
shingle_title_2 | Zagier's conjecture on L(E,2) |
shingle_title_3 | Zagier's conjecture on L(E,2) |
shingle_title_4 | Zagier's conjecture on L(E,2) |
sigel_instance_filter | dkfz geomar wilbert ipn albert fhp |
source_archive | Springer Online Journal Archives 1860-2000 |
timestamp | 2024-05-06T09:39:31.153Z |
titel | Zagier's conjecture on L(E,2) |
titel_suche | Zagier's conjecture on L(E,2) |
topic | SA-SP |
uid | nat_lic_papers_NLM202318540 |