A cosmochemical view of cosmic rays and solar particles

Price, P. B.
Springer
Published 1973
ISSN:
1572-9672
Source:
Springer Online Journal Archives 1860-2000
Topics:
Physics
Notes:
Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296495202500608
autor Price, P. B.
autorsonst Price, P. B.
book_url http://dx.doi.org/10.1007/BF00172437
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM195922166
issn 1572-9672
journal_name Space science reviews
materialart 1
notes Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
package_name Springer
publikationsjahr_anzeige 1973
publikationsjahr_facette 1973
publikationsjahr_intervall 8029:1970-1974
publikationsjahr_sort 1973
publisher Springer
reference 15 (1973), S. 69-88
search_space articles
shingle_author_1 Price, P. B.
shingle_author_2 Price, P. B.
shingle_author_3 Price, P. B.
shingle_author_4 Price, P. B.
shingle_catch_all_1 Price, P. B.
A cosmochemical view of cosmic rays and solar particles
Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
1572-9672
15729672
Springer
shingle_catch_all_2 Price, P. B.
A cosmochemical view of cosmic rays and solar particles
Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
1572-9672
15729672
Springer
shingle_catch_all_3 Price, P. B.
A cosmochemical view of cosmic rays and solar particles
Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
1572-9672
15729672
Springer
shingle_catch_all_4 Price, P. B.
A cosmochemical view of cosmic rays and solar particles
Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.
1572-9672
15729672
Springer
shingle_title_1 A cosmochemical view of cosmic rays and solar particles
shingle_title_2 A cosmochemical view of cosmic rays and solar particles
shingle_title_3 A cosmochemical view of cosmic rays and solar particles
shingle_title_4 A cosmochemical view of cosmic rays and solar particles
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:52:59.615Z
titel A cosmochemical view of cosmic rays and solar particles
titel_suche A cosmochemical view of cosmic rays and solar particles
topic U
uid nat_lic_papers_NLM195922166