Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation

Lu, C. H. ; Evan-Iwanowski, R. M.
Springer
Published 1994
ISSN:
1573-269X
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mathematics
Notes:
Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296667947008001
autor Lu, C. H.
Evan-Iwanowski, R. M.
autorsonst Lu, C. H.
Evan-Iwanowski, R. M.
book_url http://dx.doi.org/10.1007/BF00052451
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM195371712
issn 1573-269X
journal_name Nonlinear dynamics
materialart 1
notes Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
package_name Springer
publikationsjahr_anzeige 1994
publikationsjahr_facette 1994
publikationsjahr_intervall 8009:1990-1994
publikationsjahr_sort 1994
publisher Springer
reference 5 (1994), S. 401-420
search_space articles
shingle_author_1 Lu, C. H.
Evan-Iwanowski, R. M.
shingle_author_2 Lu, C. H.
Evan-Iwanowski, R. M.
shingle_author_3 Lu, C. H.
Evan-Iwanowski, R. M.
shingle_author_4 Lu, C. H.
Evan-Iwanowski, R. M.
shingle_catch_all_1 Lu, C. H.
Evan-Iwanowski, R. M.
Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
1573-269X
1573269X
Springer
shingle_catch_all_2 Lu, C. H.
Evan-Iwanowski, R. M.
Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
1573-269X
1573269X
Springer
shingle_catch_all_3 Lu, C. H.
Evan-Iwanowski, R. M.
Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
1573-269X
1573269X
Springer
shingle_catch_all_4 Lu, C. H.
Evan-Iwanowski, R. M.
Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
Abstract The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, Ω), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the ‘window’ in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, Ω) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, χST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.
1573-269X
1573269X
Springer
shingle_title_1 Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
shingle_title_2 Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
shingle_title_3 Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
shingle_title_4 Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:55:44.829Z
titel Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
titel_suche Period doubling bifurcation problems in the softening Duffing oscillator with nonstationary excitation
topic SA-SP
uid nat_lic_papers_NLM195371712