The general form of the three-dimensional elastic field inside an isotropic plate with free faces

Gregory, R. D.
Springer
Published 1992
ISSN:
1573-2681
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
Notes:
Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296667393359874
autor Gregory, R. D.
autorsonst Gregory, R. D.
book_url http://dx.doi.org/10.1007/BF00042522
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM193774828
issn 1573-2681
journal_name Journal of elasticity
materialart 1
notes Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
package_name Springer
publikationsjahr_anzeige 1992
publikationsjahr_facette 1992
publikationsjahr_intervall 8009:1990-1994
publikationsjahr_sort 1992
publisher Springer
reference 28 (1992), S. 1-28
search_space articles
shingle_author_1 Gregory, R. D.
shingle_author_2 Gregory, R. D.
shingle_author_3 Gregory, R. D.
shingle_author_4 Gregory, R. D.
shingle_catch_all_1 Gregory, R. D.
The general form of the three-dimensional elastic field inside an isotropic plate with free faces
Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
1573-2681
15732681
Springer
shingle_catch_all_2 Gregory, R. D.
The general form of the three-dimensional elastic field inside an isotropic plate with free faces
Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
1573-2681
15732681
Springer
shingle_catch_all_3 Gregory, R. D.
The general form of the three-dimensional elastic field inside an isotropic plate with free faces
Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
1573-2681
15732681
Springer
shingle_catch_all_4 Gregory, R. D.
The general form of the three-dimensional elastic field inside an isotropic plate with free faces
Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
1573-2681
15732681
Springer
shingle_title_1 The general form of the three-dimensional elastic field inside an isotropic plate with free faces
shingle_title_2 The general form of the three-dimensional elastic field inside an isotropic plate with free faces
shingle_title_3 The general form of the three-dimensional elastic field inside an isotropic plate with free faces
shingle_title_4 The general form of the three-dimensional elastic field inside an isotropic plate with free faces
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:55:44.829Z
titel The general form of the three-dimensional elastic field inside an isotropic plate with free faces
titel_suche The general form of the three-dimensional elastic field inside an isotropic plate with free faces
topic ZL
U
uid nat_lic_papers_NLM193774828