The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions

Gregory, R. D.
Springer
Published 1980
ISSN:
1573-2681
Source:
Springer Online Journal Archives 1860-2000
Topics:
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
Notes:
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296666411892736
autor Gregory, R. D.
autorsonst Gregory, R. D.
book_url http://dx.doi.org/10.1007/BF00127452
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM193763680
issn 1573-2681
journal_name Journal of elasticity
materialart 1
notes Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
package_name Springer
publikationsjahr_anzeige 1980
publikationsjahr_facette 1980
publikationsjahr_intervall 8019:1980-1984
publikationsjahr_sort 1980
publisher Springer
reference 10 (1980), S. 295-327
search_space articles
shingle_author_1 Gregory, R. D.
shingle_author_2 Gregory, R. D.
shingle_author_3 Gregory, R. D.
shingle_author_4 Gregory, R. D.
shingle_catch_all_1 Gregory, R. D.
The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
1573-2681
15732681
Springer
shingle_catch_all_2 Gregory, R. D.
The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
1573-2681
15732681
Springer
shingle_catch_all_3 Gregory, R. D.
The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
1573-2681
15732681
Springer
shingle_catch_all_4 Gregory, R. D.
The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
1573-2681
15732681
Springer
shingle_title_1 The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
shingle_title_2 The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
shingle_title_3 The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
shingle_title_4 The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:55:43.947Z
titel The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
titel_suche The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
topic ZL
U
uid nat_lic_papers_NLM193763680