The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions
ISSN: |
1573-2681
|
---|---|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
|
Notes: |
Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
|
Type of Medium: |
Electronic Resource
|
URL: |
_version_ | 1798296666411892736 |
---|---|
autor | Gregory, R. D. |
autorsonst | Gregory, R. D. |
book_url | http://dx.doi.org/10.1007/BF00127452 |
datenlieferant | nat_lic_papers |
hauptsatz | hsatz_simple |
identnr | NLM193763680 |
issn | 1573-2681 |
journal_name | Journal of elasticity |
materialart | 1 |
notes | Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}. |
package_name | Springer |
publikationsjahr_anzeige | 1980 |
publikationsjahr_facette | 1980 |
publikationsjahr_intervall | 8019:1980-1984 |
publikationsjahr_sort | 1980 |
publisher | Springer |
reference | 10 (1980), S. 295-327 |
search_space | articles |
shingle_author_1 | Gregory, R. D. |
shingle_author_2 | Gregory, R. D. |
shingle_author_3 | Gregory, R. D. |
shingle_author_4 | Gregory, R. D. |
shingle_catch_all_1 | Gregory, R. D. The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}. 1573-2681 15732681 Springer |
shingle_catch_all_2 | Gregory, R. D. The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}. 1573-2681 15732681 Springer |
shingle_catch_all_3 | Gregory, R. D. The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}. 1573-2681 15732681 Springer |
shingle_catch_all_4 | Gregory, R. D. The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}. 1573-2681 15732681 Springer |
shingle_title_1 | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
shingle_title_2 | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
shingle_title_3 | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
shingle_title_4 | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
sigel_instance_filter | dkfz geomar wilbert ipn albert fhp |
source_archive | Springer Online Journal Archives 1860-2000 |
timestamp | 2024-05-06T09:55:43.947Z |
titel | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
titel_suche | The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions |
topic | ZL U |
uid | nat_lic_papers_NLM193763680 |