Grassland biogeochemistry: Links to atmospheric processes

ISSN:
1573-1480
Source:
Springer Online Journal Archives 1860-2000
Topics:
Geosciences
Physics
Notes:
Abstract Regional modeling is an essential step in scaling plot measurements of biogeochemical cycling to global scales for use in coupled atmosphere-biosphere studies. We present a model of carbon and nitrogen biogeochemistry for the U.S. Central Grasslands region based on laboratory, field, and modeling studies. Model simulations of the geography of C and N biogeochemistry adequately fit observed data. Model results show geographic patterns of cycling rates and element storage to be a complex function of the interaction of climatic and soil properties. The model also includes regional trace gas simulation, providing a link between studies of atmospheric geochemistry and ecosystem function. The model simulates nitrogenous trace gas emission rates as a function of N turnover and indicates that they are variable across the grasslands. We studied effects of changing climate using information from a global climate model. Simulations showed that increases in temperature and associated changes in precipitation caused increases in decomposition and long-term emission of Co2 from grassland soils. Nutrient release associated with the loss of soil organic matter caused increases in net primary production, demonstrating that nutrient interactions are a major control over vegetation response to climate change.
Type of Medium:
Electronic Resource
URL: