Mouse models of genetic disease: New approaches, new paradigms

Brown, S. D. M.
Springer
Published 1998
ISSN:
1573-2665
Source:
Springer Online Journal Archives 1860-2000
Topics:
Medicine
Notes:
Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296659478708224
autor Brown, S. D. M.
autorsonst Brown, S. D. M.
book_url http://dx.doi.org/10.1023/A:1005414921109
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM193465736
issn 1573-2665
journal_name Journal of inherited metabolic disease
materialart 1
notes Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
package_name Springer
publikationsjahr_anzeige 1998
publikationsjahr_facette 1998
publikationsjahr_intervall 8004:1995-1999
publikationsjahr_sort 1998
publisher Springer
reference 21 (1998), S. 532-539
search_space articles
shingle_author_1 Brown, S. D. M.
shingle_author_2 Brown, S. D. M.
shingle_author_3 Brown, S. D. M.
shingle_author_4 Brown, S. D. M.
shingle_catch_all_1 Brown, S. D. M.
Mouse models of genetic disease: New approaches, new paradigms
Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
1573-2665
15732665
Springer
shingle_catch_all_2 Brown, S. D. M.
Mouse models of genetic disease: New approaches, new paradigms
Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
1573-2665
15732665
Springer
shingle_catch_all_3 Brown, S. D. M.
Mouse models of genetic disease: New approaches, new paradigms
Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
1573-2665
15732665
Springer
shingle_catch_all_4 Brown, S. D. M.
Mouse models of genetic disease: New approaches, new paradigms
Abstract The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted – although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
1573-2665
15732665
Springer
shingle_title_1 Mouse models of genetic disease: New approaches, new paradigms
shingle_title_2 Mouse models of genetic disease: New approaches, new paradigms
shingle_title_3 Mouse models of genetic disease: New approaches, new paradigms
shingle_title_4 Mouse models of genetic disease: New approaches, new paradigms
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:55:37.314Z
titel Mouse models of genetic disease: New approaches, new paradigms
titel_suche Mouse models of genetic disease: New approaches, new paradigms
topic WW-YZ
uid nat_lic_papers_NLM193465736