Maximum density effects on convective instability of horizontal plane poiseuille flows in the thermal entrance region
ISSN: |
1573-1987
|
---|---|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
|
Notes: |
Abstract A linear stability analysis is used to study the conditions marking the onset of secondary flow in the form of longitudinal vortices for plane Poiseuille flow of water in the thermal entrance region of a horizontal parallel-plate channel by a numerical method. The water temperature range under consideration is 0∼30°C and the maximum density effect at 4°C is of primary interest. The basic flow solution for temperature includes axial heat conduction effect and the entrance temperature is taken to be uniform at far upstream location jackie=−∞ to allow for the upstream heat penetration through thermal entrance jackie=0. Numerical results for critical Rayleigh number are obtained for Peclet numbers 1, 10, 50 and thermal condition parameters (λ 1, λ 2) in the range of −2.0≤λ 1≤−0.5 and −1.0≤λ 2≤1.4. The analysis is motivated by a desire to determine the free convection effect on freezing or thawing in channel flow of water.
|
Type of Medium: |
Electronic Resource
|
URL: |