The fine structure of the olfactory mucosa in man

ISSN:
1573-7381
Source:
Springer Online Journal Archives 1860-2000
Topics:
Medicine
Notes:
Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
Type of Medium:
Electronic Resource
URL:
_version_ 1798296914704203776
autor Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
autorsonst Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
book_url http://dx.doi.org/10.1007/BF01153516
datenlieferant nat_lic_papers
hauptsatz hsatz_simple
identnr NLM189902663
issn 1573-7381
journal_name Journal of neurocytology
materialart 1
notes Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
package_name Springer
publikationsjahr_anzeige 1982
publikationsjahr_facette 1982
publikationsjahr_intervall 8019:1980-1984
publikationsjahr_sort 1982
publisher Springer
reference 11 (1982), S. 721-746
search_space articles
shingle_author_1 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
shingle_author_2 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
shingle_author_3 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
shingle_author_4 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
shingle_catch_all_1 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
The fine structure of the olfactory mucosa in man
Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
1573-7381
15737381
Springer
shingle_catch_all_2 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
The fine structure of the olfactory mucosa in man
Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
1573-7381
15737381
Springer
shingle_catch_all_3 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
The fine structure of the olfactory mucosa in man
Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
1573-7381
15737381
Springer
shingle_catch_all_4 Moran, David T.
Rowley, J. Carter
Jafek, Bruce W.
Lovell, Mark A.
The fine structure of the olfactory mucosa in man
Summary This report gives a detailed description of the fine structure of the olfactory mucosa in man. Using a special biopsy instrument and technique, fresh biopsies of olfactory epithelium were taken under local anaesthesia from eight normal volunteers. Transmission electron microscopy reveals that human olfactory epithelium has four major cell types: ciliated olfactory receptors, supporting cells, basal cells and microvillar cells. The ciliated olfactory receptors, as in other mammals, are bipolar neurons; the dendrite tip, modified to form the olfactory vesicle, bears 10–30 cilia that lack dynein arms. The supporting cells, markedly different from the goblet cells of respiratory epithelium, are not specialized for mucus secretion. Instead they are equipped to contribute materials to, and remove materials from, the surface mucus. The basal cells are stem cells that serve to replace epithelial cells and receptors lost during normal turnover or injury. In addition to ciliated olfactory neurons, supporting cells and basal cells, the human olfactory mucosa contains a distinct fourth cell type, the microvillar cell, of unknown function. The apical pole of the cell sends a tuft of short microvilli into the nasal cavity; its basal pole gives rise to a slender cytoplasmic process that resembles an axon. If microvillar cells prove to be sensory cells, the current concept of the human olfactory epithelium will have to be revised to include two morphologically distinct classes of receptors.
1573-7381
15737381
Springer
shingle_title_1 The fine structure of the olfactory mucosa in man
shingle_title_2 The fine structure of the olfactory mucosa in man
shingle_title_3 The fine structure of the olfactory mucosa in man
shingle_title_4 The fine structure of the olfactory mucosa in man
sigel_instance_filter dkfz
geomar
wilbert
ipn
albert
fhp
source_archive Springer Online Journal Archives 1860-2000
timestamp 2024-05-06T09:59:40.665Z
titel The fine structure of the olfactory mucosa in man
titel_suche The fine structure of the olfactory mucosa in man
topic WW-YZ
uid nat_lic_papers_NLM189902663