Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition"
T. Liu ; G. Kim ; J. Carretero-Gonzalez ; E. Castillo-Martinez ; P. M. Bayley ; Z. Liu ; C. P. Grey
American Association for the Advancement of Science (AAAS)
Published 2016
American Association for the Advancement of Science (AAAS)
Published 2016
Publication Date: |
2016-05-10
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Computer Science
Medicine
Natural Sciences in General
Physics
|
Published by: |
_version_ | 1836399151660662784 |
---|---|
autor | T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey |
beschreibung | Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) 〈--〉 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tao -- Kim, Gunwoo -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Bayley, Paul M -- Liu, Zigeng -- Grey, Clare P -- New York, N.Y. -- Science. 2016 May 6;352(6286):667.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27158717" target="_blank"〉PubMed〈/a〉 |
citation_standardnr | PMID:27158717 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2016-05-10 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2016 |
publikationsjahr_facette | 2016 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2016 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science. 352(6286): 667. |
relation | http://www.ncbi.nlm.nih.gov/pubmed/27158717 |
search_space | articles |
shingle_author_1 | T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey |
shingle_author_2 | T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey |
shingle_author_3 | T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey |
shingle_author_4 | T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey |
shingle_catch_all_1 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) <--> 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.<br /><span class="detail_caption">Notes: </span>Liu, Tao -- Kim, Gunwoo -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Bayley, Paul M -- Liu, Zigeng -- Grey, Clare P -- New York, N.Y. -- Science. 2016 May 6;352(6286):667.<br /><span class="detail_caption">Record origin:</span> <a href="http://www.ncbi.nlm.nih.gov/pubmed/27158717" target="_blank">PubMed</a> T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) <--> 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.<br /><span class="detail_caption">Notes: </span>Liu, Tao -- Kim, Gunwoo -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Bayley, Paul M -- Liu, Zigeng -- Grey, Clare P -- New York, N.Y. -- Science. 2016 May 6;352(6286):667.<br /><span class="detail_caption">Record origin:</span> <a href="http://www.ncbi.nlm.nih.gov/pubmed/27158717" target="_blank">PubMed</a> T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) <--> 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.<br /><span class="detail_caption">Notes: </span>Liu, Tao -- Kim, Gunwoo -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Bayley, Paul M -- Liu, Zigeng -- Grey, Clare P -- New York, N.Y. -- Science. 2016 May 6;352(6286):667.<br /><span class="detail_caption">Record origin:</span> <a href="http://www.ncbi.nlm.nih.gov/pubmed/27158717" target="_blank">PubMed</a> T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) <--> 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.<br /><span class="detail_caption">Notes: </span>Liu, Tao -- Kim, Gunwoo -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Bayley, Paul M -- Liu, Zigeng -- Grey, Clare P -- New York, N.Y. -- Science. 2016 May 6;352(6286):667.<br /><span class="detail_caption">Record origin:</span> <a href="http://www.ncbi.nlm.nih.gov/pubmed/27158717" target="_blank">PubMed</a> T. Liu G. Kim J. Carretero-Gonzalez E. Castillo-Martinez P. M. Bayley Z. Liu C. P. Grey American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
shingle_title_2 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
shingle_title_3 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
shingle_title_4 | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
timestamp | 2025-06-30T23:38:25.417Z |
titel | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
titel_suche | Response to Comment on "Cycling Li-O(2) batteries via LiOH formation and decomposition" |
topic | W V SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_PMID:27158717 |