Integrated photonic platform for quantum information with continuous variables
Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-12-08
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Electronic ISSN: |
2375-2548
|
Topics: |
Natural Sciences in General
|
Published by: |
_version_ | 1836399101104619520 |
---|---|
autor | Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. |
beschreibung | Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of – 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 〈 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states. |
citation_standardnr | 6367078 |
datenlieferant | ipn_articles |
feed_id | 228416 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-12-08 |
journaleissn | 2375-2548 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science Advances |
relation | http://advances.sciencemag.org/cgi/content/short/4/12/eaat9331?rss=1 |
search_space | articles |
shingle_author_1 | Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. |
shingle_author_2 | Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. |
shingle_author_3 | Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. |
shingle_author_4 | Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. |
shingle_catch_all_1 | Integrated photonic platform for quantum information with continuous variables Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of – 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states. Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_2 | Integrated photonic platform for quantum information with continuous variables Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of – 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states. Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_3 | Integrated photonic platform for quantum information with continuous variables Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of – 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states. Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_4 | Integrated photonic platform for quantum information with continuous variables Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of – 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states. Lenzini, F., Janousek, J., Thearle, O., Villa, M., Haylock, B., Kasture, S., Cui, L., Phan, H.-P., Dao, D. V., Yonezawa, H., Lam, P. K., Huntington, E. H., Lobino, M. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_title_1 | Integrated photonic platform for quantum information with continuous variables |
shingle_title_2 | Integrated photonic platform for quantum information with continuous variables |
shingle_title_3 | Integrated photonic platform for quantum information with continuous variables |
shingle_title_4 | Integrated photonic platform for quantum information with continuous variables |
timestamp | 2025-06-30T23:37:36.967Z |
titel | Integrated photonic platform for quantum information with continuous variables |
titel_suche | Integrated photonic platform for quantum information with continuous variables |
topic | TA-TD |
uid | ipn_articles_6367078 |