Evolutionary Virology at 40 [Perspectives]

Geoghegan, J. L., Holmes, E. C.
Genetics Society of America (GSA)
Published 2018
Publication Date:
2018-12-07
Publisher:
Genetics Society of America (GSA)
Print ISSN:
0016-6731
Topics:
Biology
Published by:
_version_ 1836399099227668480
autor Geoghegan, J. L., Holmes, E. C.
beschreibung RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales. We suggest that the impetus for this new synthesis may come from methodological advances in next-generation sequencing and metagenomics.
citation_standardnr 6365891
datenlieferant ipn_articles
feed_id 2584
feed_publisher Genetics Society of America (GSA)
feed_publisher_url http://www.genetics-gsa.org/
insertion_date 2018-12-07
journalissn 0016-6731
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher Genetics Society of America (GSA)
quelle Genetics
relation http://www.genetics.org/cgi/content/short/210/4/1151?rss=1
search_space articles
shingle_author_1 Geoghegan, J. L., Holmes, E. C.
shingle_author_2 Geoghegan, J. L., Holmes, E. C.
shingle_author_3 Geoghegan, J. L., Holmes, E. C.
shingle_author_4 Geoghegan, J. L., Holmes, E. C.
shingle_catch_all_1 Evolutionary Virology at 40 [Perspectives]
RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales. We suggest that the impetus for this new synthesis may come from methodological advances in next-generation sequencing and metagenomics.
Geoghegan, J. L., Holmes, E. C.
Genetics Society of America (GSA)
0016-6731
00166731
shingle_catch_all_2 Evolutionary Virology at 40 [Perspectives]
RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales. We suggest that the impetus for this new synthesis may come from methodological advances in next-generation sequencing and metagenomics.
Geoghegan, J. L., Holmes, E. C.
Genetics Society of America (GSA)
0016-6731
00166731
shingle_catch_all_3 Evolutionary Virology at 40 [Perspectives]
RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales. We suggest that the impetus for this new synthesis may come from methodological advances in next-generation sequencing and metagenomics.
Geoghegan, J. L., Holmes, E. C.
Genetics Society of America (GSA)
0016-6731
00166731
shingle_catch_all_4 Evolutionary Virology at 40 [Perspectives]
RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales. We suggest that the impetus for this new synthesis may come from methodological advances in next-generation sequencing and metagenomics.
Geoghegan, J. L., Holmes, E. C.
Genetics Society of America (GSA)
0016-6731
00166731
shingle_title_1 Evolutionary Virology at 40 [Perspectives]
shingle_title_2 Evolutionary Virology at 40 [Perspectives]
shingle_title_3 Evolutionary Virology at 40 [Perspectives]
shingle_title_4 Evolutionary Virology at 40 [Perspectives]
timestamp 2025-06-30T23:37:35.338Z
titel Evolutionary Virology at 40 [Perspectives]
titel_suche Evolutionary Virology at 40 [Perspectives]
topic W
uid ipn_articles_6365891