Isostructural metal-insulator transition in VO2
Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-11-30
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
|
Keywords: |
Materials Science, Physics
|
Published by: |
_version_ | 1836399094649585666 |
---|---|
autor | Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. |
beschreibung | The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. |
citation_standardnr | 6363019 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-11-30 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science |
relation | http://science.sciencemag.org/cgi/content/short/362/6418/1037?rss=1 |
schlagwort | Materials Science, Physics |
search_space | articles |
shingle_author_1 | Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. |
shingle_author_2 | Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. |
shingle_author_3 | Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. |
shingle_author_4 | Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. |
shingle_catch_all_1 | Isostructural metal-insulator transition in VO2 Materials Science, Physics The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | Isostructural metal-insulator transition in VO2 Materials Science, Physics The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | Isostructural metal-insulator transition in VO2 Materials Science, Physics The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | Isostructural metal-insulator transition in VO2 Materials Science, Physics The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | Isostructural metal-insulator transition in VO2 |
shingle_title_2 | Isostructural metal-insulator transition in VO2 |
shingle_title_3 | Isostructural metal-insulator transition in VO2 |
shingle_title_4 | Isostructural metal-insulator transition in VO2 |
timestamp | 2025-06-30T23:37:30.999Z |
titel | Isostructural metal-insulator transition in VO2 |
titel_suche | Isostructural metal-insulator transition in VO2 |
topic | W V TE-TZ SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_6363019 |