Isostructural metal-insulator transition in VO2

Publication Date:
2018-11-30
Publisher:
American Association for the Advancement of Science (AAAS)
Print ISSN:
0036-8075
Electronic ISSN:
1095-9203
Topics:
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
Keywords:
Materials Science, Physics
Published by:
_version_ 1836399094649585666
autor Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
beschreibung The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
citation_standardnr 6363019
datenlieferant ipn_articles
feed_id 25
feed_publisher American Association for the Advancement of Science (AAAS)
feed_publisher_url http://www.aaas.org/
insertion_date 2018-11-30
journaleissn 1095-9203
journalissn 0036-8075
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher American Association for the Advancement of Science (AAAS)
quelle Science
relation http://science.sciencemag.org/cgi/content/short/362/6418/1037?rss=1
schlagwort Materials Science, Physics
search_space articles
shingle_author_1 Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
shingle_author_2 Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
shingle_author_3 Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
shingle_author_4 Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
shingle_catch_all_1 Isostructural metal-insulator transition in VO2
Materials Science, Physics
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_2 Isostructural metal-insulator transition in VO2
Materials Science, Physics
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_3 Isostructural metal-insulator transition in VO2
Materials Science, Physics
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_4 Isostructural metal-insulator transition in VO2
Materials Science, Physics
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Lee, D., Chung, B., Shi, Y., Kim, G.- Y., Campbell, N., Xue, F., Song, K., Choi, S.- Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J.- W., Paudel, T. R., Kang, J.- H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., Eom, C. B.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_title_1 Isostructural metal-insulator transition in VO2
shingle_title_2 Isostructural metal-insulator transition in VO2
shingle_title_3 Isostructural metal-insulator transition in VO2
shingle_title_4 Isostructural metal-insulator transition in VO2
timestamp 2025-06-30T23:37:30.999Z
titel Isostructural metal-insulator transition in VO2
titel_suche Isostructural metal-insulator transition in VO2
topic W
V
TE-TZ
SQ-SU
WW-YZ
TA-TD
U
uid ipn_articles_6363019