Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]

Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
The American Society for Biochemistry and Molecular Biology (ASBMB)
Published 2018
Publication Date:
2018-11-24
Publisher:
The American Society for Biochemistry and Molecular Biology (ASBMB)
Print ISSN:
0021-9258
Electronic ISSN:
1083-351X
Topics:
Biology
Chemistry and Pharmacology
Published by:
_version_ 1836399091063455744
autor Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
beschreibung The NEDD4-2 (neural precursor cell–expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin–binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in kcat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT–ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
citation_standardnr 6360321
datenlieferant ipn_articles
feed_id 43
feed_publisher The American Society for Biochemistry and Molecular Biology (ASBMB)
feed_publisher_url http://www.asbmb.org/
insertion_date 2018-11-24
journaleissn 1083-351X
journalissn 0021-9258
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Biochemistry and Molecular Biology (ASBMB)
quelle Journal of Biological Chemistry
relation http://feedproxy.google.com/~r/jbc/SUcv/~3/So_Cl_TqElY/18192.short
search_space articles
shingle_author_1 Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
shingle_author_2 Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
shingle_author_3 Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
shingle_author_4 Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
shingle_catch_all_1 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
The NEDD4-2 (neural precursor cell–expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin–binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in kcat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT–ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
The American Society for Biochemistry and Molecular Biology (ASBMB)
0021-9258
00219258
1083-351X
1083351X
shingle_catch_all_2 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
The NEDD4-2 (neural precursor cell–expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin–binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in kcat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT–ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
The American Society for Biochemistry and Molecular Biology (ASBMB)
0021-9258
00219258
1083-351X
1083351X
shingle_catch_all_3 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
The NEDD4-2 (neural precursor cell–expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin–binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in kcat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT–ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
The American Society for Biochemistry and Molecular Biology (ASBMB)
0021-9258
00219258
1083-351X
1083351X
shingle_catch_all_4 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
The NEDD4-2 (neural precursor cell–expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin–binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in kcat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT–ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Dustin R. Todaro, Allison C. Augustus-Wallace, Jennifer M. Klein, Arthur L. Haas
The American Society for Biochemistry and Molecular Biology (ASBMB)
0021-9258
00219258
1083-351X
1083351X
shingle_title_1 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
shingle_title_2 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
shingle_title_3 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
shingle_title_4 Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
timestamp 2025-06-30T23:37:27.749Z
titel Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
titel_suche Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly [Protein Synthesis and Degradation]
topic W
V
uid ipn_articles_6360321