Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-10-05
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
|
Keywords: |
Medicine, Diseases, Molecular Biology
|
Published by: |
_version_ | 1836399063017193473 |
---|---|
autor | Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. |
beschreibung | Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery ( n = 2) or 8 weeks after systemic delivery ( n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. |
citation_standardnr | 6341502 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-10-05 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science |
relation | http://science.sciencemag.org/cgi/content/short/362/6410/86?rss=1 |
schlagwort | Medicine, Diseases, Molecular Biology |
search_space | articles |
shingle_author_1 | Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. |
shingle_author_2 | Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. |
shingle_author_3 | Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. |
shingle_author_4 | Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. |
shingle_catch_all_1 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy Medicine, Diseases, Molecular Biology Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery ( n = 2) or 8 weeks after systemic delivery ( n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy Medicine, Diseases, Molecular Biology Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery ( n = 2) or 8 weeks after systemic delivery ( n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy Medicine, Diseases, Molecular Biology Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery ( n = 2) or 8 weeks after systemic delivery ( n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy Medicine, Diseases, Molecular Biology Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational "hotspot" in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery ( n = 2) or 8 weeks after systemic delivery ( n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
shingle_title_2 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
shingle_title_3 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
shingle_title_4 | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
timestamp | 2025-06-30T23:37:00.961Z |
titel | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
titel_suche | Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy |
topic | W V TE-TZ SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_6341502 |