Magic angle spinning spheres

Publication Date:
2018-09-22
Publisher:
American Association for the Advancement of Science (AAAS)
Electronic ISSN:
2375-2548
Topics:
Natural Sciences in General
Published by:
_version_ 1836399056647094272
autor Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
beschreibung Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5–mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N 2 (g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79 Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
citation_standardnr 6336489
datenlieferant ipn_articles
feed_id 228416
feed_publisher American Association for the Advancement of Science (AAAS)
feed_publisher_url http://www.aaas.org/
insertion_date 2018-09-22
journaleissn 2375-2548
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher American Association for the Advancement of Science (AAAS)
quelle Science Advances
relation http://advances.sciencemag.org/cgi/content/short/4/9/eaau1540?rss=1
search_space articles
shingle_author_1 Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
shingle_author_2 Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
shingle_author_3 Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
shingle_author_4 Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
shingle_catch_all_1 Magic angle spinning spheres
Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5–mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N 2 (g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79 Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
American Association for the Advancement of Science (AAAS)
2375-2548
23752548
shingle_catch_all_2 Magic angle spinning spheres
Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5–mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N 2 (g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79 Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
American Association for the Advancement of Science (AAAS)
2375-2548
23752548
shingle_catch_all_3 Magic angle spinning spheres
Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5–mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N 2 (g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79 Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
American Association for the Advancement of Science (AAAS)
2375-2548
23752548
shingle_catch_all_4 Magic angle spinning spheres
Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5–mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N 2 (g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of 79 Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., Barnes, A. B.
American Association for the Advancement of Science (AAAS)
2375-2548
23752548
shingle_title_1 Magic angle spinning spheres
shingle_title_2 Magic angle spinning spheres
shingle_title_3 Magic angle spinning spheres
shingle_title_4 Magic angle spinning spheres
timestamp 2025-06-30T23:36:54.367Z
titel Magic angle spinning spheres
titel_suche Magic angle spinning spheres
topic TA-TD
uid ipn_articles_6336489