Fast molecular outflow from a dusty star-forming galaxy in the early Universe

Publication Date:
2018-09-07
Publisher:
American Association for the Advancement of Science (AAAS)
Print ISSN:
0036-8075
Electronic ISSN:
1095-9203
Topics:
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
Keywords:
Astronomy
Published by:
_version_ 1836399045563645952
autor Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
beschreibung Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
citation_standardnr 6329524
datenlieferant ipn_articles
feed_id 25
feed_publisher American Association for the Advancement of Science (AAAS)
feed_publisher_url http://www.aaas.org/
insertion_date 2018-09-07
journaleissn 1095-9203
journalissn 0036-8075
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher American Association for the Advancement of Science (AAAS)
quelle Science
relation http://science.sciencemag.org/cgi/content/short/361/6406/1016?rss=1
schlagwort Astronomy
search_space articles
shingle_author_1 Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
shingle_author_2 Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
shingle_author_3 Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
shingle_author_4 Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
shingle_catch_all_1 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
Astronomy
Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_2 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
Astronomy
Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_3 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
Astronomy
Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_4 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
Astronomy
Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
Spilker, J. S., Aravena, M., Bethermin, M., Chapman, S. C., Chen, C.- C., Cunningham, D. J. M., De Breuck, C., Dong, C., Gonzalez, A. H., Hayward, C. C., Hezaveh, Y. D., Litke, K. C., Ma, J., Malkan, M., Marrone, D. P., Miller, T. B., Morningstar, W. R., Narayanan, D., Phadke, K. A., Sreevani, J., Stark, A. A., Vieira, J. D., Weiss, A.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_title_1 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
shingle_title_2 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
shingle_title_3 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
shingle_title_4 Fast molecular outflow from a dusty star-forming galaxy in the early Universe
timestamp 2025-06-30T23:36:43.370Z
titel Fast molecular outflow from a dusty star-forming galaxy in the early Universe
titel_suche Fast molecular outflow from a dusty star-forming galaxy in the early Universe
topic W
V
TE-TZ
SQ-SU
WW-YZ
TA-TD
U
uid ipn_articles_6329524