Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]

Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
The American Society for Microbiology (ASM)
Published 2018
Publication Date:
2018-06-19
Publisher:
The American Society for Microbiology (ASM)
Print ISSN:
0099-2240
Electronic ISSN:
1098-5336
Topics:
Biology
Published by:
_version_ 1836398978737897472
autor Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
beschreibung Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.
citation_standardnr 6286413
datenlieferant ipn_articles
feed_id 516
feed_publisher The American Society for Microbiology (ASM)
feed_publisher_url http://www.asm.org/
insertion_date 2018-06-19
journaleissn 1098-5336
journalissn 0099-2240
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Microbiology (ASM)
quelle Applied and Environmental Microbiology
relation http://aem.asm.org/cgi/content/short/84/13/e00507-18?rss=1
search_space articles
shingle_author_1 Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
shingle_author_2 Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
shingle_author_3 Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
shingle_author_4 Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
shingle_catch_all_1 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.
Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_2 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.
Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_3 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.
Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_4 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.
Casanovas-Massana, A., Pedra, G. G., Wunder, E. A., Diggle, P. J., Begon, M., Ko, A. I.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_title_1 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
shingle_title_2 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
shingle_title_3 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
shingle_title_4 Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
timestamp 2025-06-30T23:35:37.843Z
titel Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
titel_suche Quantification of Leptospira interrogans Survival in Soil and Water Microcosms [Environmental Microbiology]
topic W
uid ipn_articles_6286413