Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]

Publication Date:
2018-06-01
Publisher:
The American Society for Microbiology (ASM)
Print ISSN:
0099-2240
Electronic ISSN:
1098-5336
Topics:
Biology
Published by:
_version_ 1836398951812562946
autor Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
beschreibung Calcimycin, N-demethyl calcimycin, and cezomycin are polyether divalent cation ionophore secondary metabolites produced by Streptomyces chartreusis . A thorough understanding of the organization of their encoding genes, biosynthetic pathway(s), and cation specificities is vitally important for their efficient future production and therapeutic use. So far, this has been lacking, as has information concerning any biosynthetic relationships that may exist between calcimycin and cezomycin. In this study, we observed that when a Cal – ( calB1 mutant) derivative of a calcimycin-producing strain of S. chartreusis (NRRL 3882) was grown on cezomycin, calcimycin production was restored. This suggested that calcimycin synthesis may have resulted from postsynthetic modification of cezomycin rather than from a de novo process through a novel and independent biosynthetic mechanism. Systematic screening of a number of Cal – S. chartreusis mutants lacking the ability to convert cezomycin to calcimycin allowed the identification of a gene, provisionally named calC , which was involved in the conversion step. Molecular cloning and heterologous expression of the CalC protein along with its purification to homogeneity and negative-staining electron microscopy allowed the determination of its apparent molecular weight, oligomeric forms in solution, and activity. These experiments allowed us to confirm that the protein possessed ATP pyrophosphatase activity and was capable of ligating coenzyme A (CoA) with cezomycin but not 3-hydroxyanthranilic acid. The CalC protein's apparent K m and k cat for cezomycin were observed to be 190 μM and 3.98 min –1 , respectively, and it possessed the oligomeric form in solution. Our results unequivocally show that cezomycin is postsynthetically modified to calcimycin by the CalC protein through its activation of cezomycin to a CoA ester form. IMPORTANCE Calcimycin is a secondary metabolite divalent cation-ionophore that has been studied in the context of human health. However, detail is lacking with respect to both calcimycin's biosynthesis and its biochemical/biophysical properties as well as information regarding its, and its analogues', divalent cation binding specificities and other activities. Such knowledge would be useful in understanding how calcimycin and related compounds may be effective in modifying the calcium channel ion flux and might be useful in influencing the homeostasis of magnesium and manganese ions for the cure or control of human and bacterial infectious diseases. The results presented here unequivocally show that CalC protein is essential for the production of calcimycin, which is essentially a derivative of cezomycin, and allow us to propose a biosynthetic mechanism for calcimycin's production.
citation_standardnr 6272538
datenlieferant ipn_articles
feed_id 516
feed_publisher The American Society for Microbiology (ASM)
feed_publisher_url http://www.asm.org/
insertion_date 2018-06-01
journaleissn 1098-5336
journalissn 0099-2240
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Microbiology (ASM)
quelle Applied and Environmental Microbiology
relation http://aem.asm.org/cgi/content/short/84/12/e00586-18?rss=1
search_space articles
shingle_author_1 Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
shingle_author_2 Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
shingle_author_3 Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
shingle_author_4 Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
shingle_catch_all_1 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
Calcimycin, N-demethyl calcimycin, and cezomycin are polyether divalent cation ionophore secondary metabolites produced by Streptomyces chartreusis . A thorough understanding of the organization of their encoding genes, biosynthetic pathway(s), and cation specificities is vitally important for their efficient future production and therapeutic use. So far, this has been lacking, as has information concerning any biosynthetic relationships that may exist between calcimycin and cezomycin. In this study, we observed that when a Cal – ( calB1 mutant) derivative of a calcimycin-producing strain of S. chartreusis (NRRL 3882) was grown on cezomycin, calcimycin production was restored. This suggested that calcimycin synthesis may have resulted from postsynthetic modification of cezomycin rather than from a de novo process through a novel and independent biosynthetic mechanism. Systematic screening of a number of Cal – S. chartreusis mutants lacking the ability to convert cezomycin to calcimycin allowed the identification of a gene, provisionally named calC , which was involved in the conversion step. Molecular cloning and heterologous expression of the CalC protein along with its purification to homogeneity and negative-staining electron microscopy allowed the determination of its apparent molecular weight, oligomeric forms in solution, and activity. These experiments allowed us to confirm that the protein possessed ATP pyrophosphatase activity and was capable of ligating coenzyme A (CoA) with cezomycin but not 3-hydroxyanthranilic acid. The CalC protein's apparent K m and k cat for cezomycin were observed to be 190 μM and 3.98 min –1 , respectively, and it possessed the oligomeric form in solution. Our results unequivocally show that cezomycin is postsynthetically modified to calcimycin by the CalC protein through its activation of cezomycin to a CoA ester form. IMPORTANCE Calcimycin is a secondary metabolite divalent cation-ionophore that has been studied in the context of human health. However, detail is lacking with respect to both calcimycin's biosynthesis and its biochemical/biophysical properties as well as information regarding its, and its analogues', divalent cation binding specificities and other activities. Such knowledge would be useful in understanding how calcimycin and related compounds may be effective in modifying the calcium channel ion flux and might be useful in influencing the homeostasis of magnesium and manganese ions for the cure or control of human and bacterial infectious diseases. The results presented here unequivocally show that CalC protein is essential for the production of calcimycin, which is essentially a derivative of cezomycin, and allow us to propose a biosynthetic mechanism for calcimycin's production.
Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_2 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
Calcimycin, N-demethyl calcimycin, and cezomycin are polyether divalent cation ionophore secondary metabolites produced by Streptomyces chartreusis . A thorough understanding of the organization of their encoding genes, biosynthetic pathway(s), and cation specificities is vitally important for their efficient future production and therapeutic use. So far, this has been lacking, as has information concerning any biosynthetic relationships that may exist between calcimycin and cezomycin. In this study, we observed that when a Cal – ( calB1 mutant) derivative of a calcimycin-producing strain of S. chartreusis (NRRL 3882) was grown on cezomycin, calcimycin production was restored. This suggested that calcimycin synthesis may have resulted from postsynthetic modification of cezomycin rather than from a de novo process through a novel and independent biosynthetic mechanism. Systematic screening of a number of Cal – S. chartreusis mutants lacking the ability to convert cezomycin to calcimycin allowed the identification of a gene, provisionally named calC , which was involved in the conversion step. Molecular cloning and heterologous expression of the CalC protein along with its purification to homogeneity and negative-staining electron microscopy allowed the determination of its apparent molecular weight, oligomeric forms in solution, and activity. These experiments allowed us to confirm that the protein possessed ATP pyrophosphatase activity and was capable of ligating coenzyme A (CoA) with cezomycin but not 3-hydroxyanthranilic acid. The CalC protein's apparent K m and k cat for cezomycin were observed to be 190 μM and 3.98 min –1 , respectively, and it possessed the oligomeric form in solution. Our results unequivocally show that cezomycin is postsynthetically modified to calcimycin by the CalC protein through its activation of cezomycin to a CoA ester form. IMPORTANCE Calcimycin is a secondary metabolite divalent cation-ionophore that has been studied in the context of human health. However, detail is lacking with respect to both calcimycin's biosynthesis and its biochemical/biophysical properties as well as information regarding its, and its analogues', divalent cation binding specificities and other activities. Such knowledge would be useful in understanding how calcimycin and related compounds may be effective in modifying the calcium channel ion flux and might be useful in influencing the homeostasis of magnesium and manganese ions for the cure or control of human and bacterial infectious diseases. The results presented here unequivocally show that CalC protein is essential for the production of calcimycin, which is essentially a derivative of cezomycin, and allow us to propose a biosynthetic mechanism for calcimycin's production.
Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_3 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
Calcimycin, N-demethyl calcimycin, and cezomycin are polyether divalent cation ionophore secondary metabolites produced by Streptomyces chartreusis . A thorough understanding of the organization of their encoding genes, biosynthetic pathway(s), and cation specificities is vitally important for their efficient future production and therapeutic use. So far, this has been lacking, as has information concerning any biosynthetic relationships that may exist between calcimycin and cezomycin. In this study, we observed that when a Cal – ( calB1 mutant) derivative of a calcimycin-producing strain of S. chartreusis (NRRL 3882) was grown on cezomycin, calcimycin production was restored. This suggested that calcimycin synthesis may have resulted from postsynthetic modification of cezomycin rather than from a de novo process through a novel and independent biosynthetic mechanism. Systematic screening of a number of Cal – S. chartreusis mutants lacking the ability to convert cezomycin to calcimycin allowed the identification of a gene, provisionally named calC , which was involved in the conversion step. Molecular cloning and heterologous expression of the CalC protein along with its purification to homogeneity and negative-staining electron microscopy allowed the determination of its apparent molecular weight, oligomeric forms in solution, and activity. These experiments allowed us to confirm that the protein possessed ATP pyrophosphatase activity and was capable of ligating coenzyme A (CoA) with cezomycin but not 3-hydroxyanthranilic acid. The CalC protein's apparent K m and k cat for cezomycin were observed to be 190 μM and 3.98 min –1 , respectively, and it possessed the oligomeric form in solution. Our results unequivocally show that cezomycin is postsynthetically modified to calcimycin by the CalC protein through its activation of cezomycin to a CoA ester form. IMPORTANCE Calcimycin is a secondary metabolite divalent cation-ionophore that has been studied in the context of human health. However, detail is lacking with respect to both calcimycin's biosynthesis and its biochemical/biophysical properties as well as information regarding its, and its analogues', divalent cation binding specificities and other activities. Such knowledge would be useful in understanding how calcimycin and related compounds may be effective in modifying the calcium channel ion flux and might be useful in influencing the homeostasis of magnesium and manganese ions for the cure or control of human and bacterial infectious diseases. The results presented here unequivocally show that CalC protein is essential for the production of calcimycin, which is essentially a derivative of cezomycin, and allow us to propose a biosynthetic mechanism for calcimycin's production.
Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_4 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
Calcimycin, N-demethyl calcimycin, and cezomycin are polyether divalent cation ionophore secondary metabolites produced by Streptomyces chartreusis . A thorough understanding of the organization of their encoding genes, biosynthetic pathway(s), and cation specificities is vitally important for their efficient future production and therapeutic use. So far, this has been lacking, as has information concerning any biosynthetic relationships that may exist between calcimycin and cezomycin. In this study, we observed that when a Cal – ( calB1 mutant) derivative of a calcimycin-producing strain of S. chartreusis (NRRL 3882) was grown on cezomycin, calcimycin production was restored. This suggested that calcimycin synthesis may have resulted from postsynthetic modification of cezomycin rather than from a de novo process through a novel and independent biosynthetic mechanism. Systematic screening of a number of Cal – S. chartreusis mutants lacking the ability to convert cezomycin to calcimycin allowed the identification of a gene, provisionally named calC , which was involved in the conversion step. Molecular cloning and heterologous expression of the CalC protein along with its purification to homogeneity and negative-staining electron microscopy allowed the determination of its apparent molecular weight, oligomeric forms in solution, and activity. These experiments allowed us to confirm that the protein possessed ATP pyrophosphatase activity and was capable of ligating coenzyme A (CoA) with cezomycin but not 3-hydroxyanthranilic acid. The CalC protein's apparent K m and k cat for cezomycin were observed to be 190 μM and 3.98 min –1 , respectively, and it possessed the oligomeric form in solution. Our results unequivocally show that cezomycin is postsynthetically modified to calcimycin by the CalC protein through its activation of cezomycin to a CoA ester form. IMPORTANCE Calcimycin is a secondary metabolite divalent cation-ionophore that has been studied in the context of human health. However, detail is lacking with respect to both calcimycin's biosynthesis and its biochemical/biophysical properties as well as information regarding its, and its analogues', divalent cation binding specificities and other activities. Such knowledge would be useful in understanding how calcimycin and related compounds may be effective in modifying the calcium channel ion flux and might be useful in influencing the homeostasis of magnesium and manganese ions for the cure or control of human and bacterial infectious diseases. The results presented here unequivocally show that CalC protein is essential for the production of calcimycin, which is essentially a derivative of cezomycin, and allow us to propose a biosynthetic mechanism for calcimycin's production.
Wu, H., Liang, J., Wang, J., Liang, W.-J., Gou, L., Wu, Q., Zhou, X., Bruce, I. J., Deng, Z., Wang, Z.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_title_1 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
shingle_title_2 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
shingle_title_3 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
shingle_title_4 Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
timestamp 2025-06-30T23:35:15.007Z
titel Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
titel_suche Cezomycin Is Activated by CalC to Its Ester Form for Further Biosynthesis Steps in the Production of Calcimycin in Streptomyces chartreusis NRRL 3882 [Enzymology and Protein Engineering]
topic W
uid ipn_articles_6272538