Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures
Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-05-25
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
|
Keywords: |
Materials Science, Physics
|
Published by: |
_version_ | 1836398943758450688 |
---|---|
autor | Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. |
beschreibung | Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )–tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. |
citation_standardnr | 6267213 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-05-25 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science |
relation | http://science.sciencemag.org/cgi/content/short/360/6391/893?rss=1 |
schlagwort | Materials Science, Physics |
search_space | articles |
shingle_author_1 | Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. |
shingle_author_2 | Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. |
shingle_author_3 | Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. |
shingle_author_4 | Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. |
shingle_catch_all_1 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures Materials Science, Physics Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )–tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures Materials Science, Physics Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )–tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures Materials Science, Physics Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )–tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures Materials Science, Physics Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )–tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Jin, C., Kim, J., Utama, M. I. B., Regan, E. C., Kleemann, H., Cai, H., Shen, Y., Shinner, M. J., Sengupta, A., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
shingle_title_2 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
shingle_title_3 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
shingle_title_4 | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
timestamp | 2025-06-30T23:35:07.282Z |
titel | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
titel_suche | Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures |
topic | W V TE-TZ SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_6267213 |