Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]

Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
The American Society for Microbiology (ASM)
Published 2018
Publication Date:
2018-05-18
Publisher:
The American Society for Microbiology (ASM)
Print ISSN:
0099-2240
Electronic ISSN:
1098-5336
Topics:
Biology
Published by:
_version_ 1836398932732674048
autor Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
beschreibung The nasal carriage rate of Staphylococcus aureus in human is 25 to 30%, and S. aureus sporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB -based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceae and Corynebacteriaceae were the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidis exhibited the highest viability in the nasal microbiota. Staphylococcus aureus detection rates from nasal specimens by rpoB -based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceae species, especially S. epidermidis , adapted most successfully to human nasal cavity. High detection of S. aureus DNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureus in everyday life. Furthermore, the large difference in S. aureus detection rates between culture and microbiome methods suggests that S. aureus cells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria. IMPORTANCE Metagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcus species, especially Staphylococcus epidermidis , in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureus DNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureus in the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.
citation_standardnr 6260805
datenlieferant ipn_articles
feed_id 516
feed_publisher The American Society for Microbiology (ASM)
feed_publisher_url http://www.asm.org/
insertion_date 2018-05-18
journaleissn 1098-5336
journalissn 0099-2240
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Microbiology (ASM)
quelle Applied and Environmental Microbiology
relation http://aem.asm.org/cgi/content/short/84/11/e00517-18?rss=1
search_space articles
shingle_author_1 Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
shingle_author_2 Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
shingle_author_3 Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
shingle_author_4 Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
shingle_catch_all_1 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
The nasal carriage rate of Staphylococcus aureus in human is 25 to 30%, and S. aureus sporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB -based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceae and Corynebacteriaceae were the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidis exhibited the highest viability in the nasal microbiota. Staphylococcus aureus detection rates from nasal specimens by rpoB -based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceae species, especially S. epidermidis , adapted most successfully to human nasal cavity. High detection of S. aureus DNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureus in everyday life. Furthermore, the large difference in S. aureus detection rates between culture and microbiome methods suggests that S. aureus cells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria. IMPORTANCE Metagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcus species, especially Staphylococcus epidermidis , in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureus DNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureus in the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.
Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_2 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
The nasal carriage rate of Staphylococcus aureus in human is 25 to 30%, and S. aureus sporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB -based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceae and Corynebacteriaceae were the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidis exhibited the highest viability in the nasal microbiota. Staphylococcus aureus detection rates from nasal specimens by rpoB -based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceae species, especially S. epidermidis , adapted most successfully to human nasal cavity. High detection of S. aureus DNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureus in everyday life. Furthermore, the large difference in S. aureus detection rates between culture and microbiome methods suggests that S. aureus cells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria. IMPORTANCE Metagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcus species, especially Staphylococcus epidermidis , in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureus DNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureus in the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.
Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_3 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
The nasal carriage rate of Staphylococcus aureus in human is 25 to 30%, and S. aureus sporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB -based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceae and Corynebacteriaceae were the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidis exhibited the highest viability in the nasal microbiota. Staphylococcus aureus detection rates from nasal specimens by rpoB -based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceae species, especially S. epidermidis , adapted most successfully to human nasal cavity. High detection of S. aureus DNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureus in everyday life. Furthermore, the large difference in S. aureus detection rates between culture and microbiome methods suggests that S. aureus cells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria. IMPORTANCE Metagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcus species, especially Staphylococcus epidermidis , in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureus DNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureus in the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.
Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_catch_all_4 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
The nasal carriage rate of Staphylococcus aureus in human is 25 to 30%, and S. aureus sporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB -based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceae and Corynebacteriaceae were the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidis exhibited the highest viability in the nasal microbiota. Staphylococcus aureus detection rates from nasal specimens by rpoB -based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceae species, especially S. epidermidis , adapted most successfully to human nasal cavity. High detection of S. aureus DNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureus in everyday life. Furthermore, the large difference in S. aureus detection rates between culture and microbiome methods suggests that S. aureus cells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria. IMPORTANCE Metagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcus species, especially Staphylococcus epidermidis , in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureus DNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureus in the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.
Lu, Y. J., Sasaki, T., Kuwahara-Arai, K., Uehara, Y., Hiramatsu, K.
The American Society for Microbiology (ASM)
0099-2240
00992240
1098-5336
10985336
shingle_title_1 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
shingle_title_2 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
shingle_title_3 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
shingle_title_4 Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
timestamp 2025-06-30T23:34:56.614Z
titel Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
titel_suche Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities [Microbial Ecology]
topic W
uid ipn_articles_6260805