A blueprint for demonstrating quantum supremacy with superconducting qubits
Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-04-13
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
|
Keywords: |
Physics
|
Published by: |
_version_ | 1836398891268833280 |
---|---|
autor | Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. |
beschreibung | A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. |
citation_standardnr | 6233633 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-04-13 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science |
relation | http://science.sciencemag.org/cgi/content/short/360/6385/195?rss=1 |
schlagwort | Physics |
search_space | articles |
shingle_author_1 | Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. |
shingle_author_2 | Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. |
shingle_author_3 | Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. |
shingle_author_4 | Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. |
shingle_catch_all_1 | A blueprint for demonstrating quantum supremacy with superconducting qubits Physics A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | A blueprint for demonstrating quantum supremacy with superconducting qubits Physics A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | A blueprint for demonstrating quantum supremacy with superconducting qubits Physics A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | A blueprint for demonstrating quantum supremacy with superconducting qubits Physics A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S. V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Neven, H., Martinis, J. M. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | A blueprint for demonstrating quantum supremacy with superconducting qubits |
shingle_title_2 | A blueprint for demonstrating quantum supremacy with superconducting qubits |
shingle_title_3 | A blueprint for demonstrating quantum supremacy with superconducting qubits |
shingle_title_4 | A blueprint for demonstrating quantum supremacy with superconducting qubits |
timestamp | 2025-06-30T23:34:17.262Z |
titel | A blueprint for demonstrating quantum supremacy with superconducting qubits |
titel_suche | A blueprint for demonstrating quantum supremacy with superconducting qubits |
topic | W V TE-TZ SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_6233633 |