Light-induced lattice expansion leads to high-efficiency perovskite solar cells

Publication Date:
2018-04-06
Publisher:
American Association for the Advancement of Science (AAAS)
Print ISSN:
0036-8075
Electronic ISSN:
1095-9203
Topics:
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
Keywords:
Physics, Applied, Materials Science
Published by:
_version_ 1836398880661438464
autor Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
beschreibung Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
citation_standardnr 6227560
datenlieferant ipn_articles
feed_id 25
feed_publisher American Association for the Advancement of Science (AAAS)
feed_publisher_url http://www.aaas.org/
insertion_date 2018-04-06
journaleissn 1095-9203
journalissn 0036-8075
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher American Association for the Advancement of Science (AAAS)
quelle Science
relation http://science.sciencemag.org/cgi/content/short/360/6384/67?rss=1
schlagwort Physics, Applied, Materials Science
search_space articles
shingle_author_1 Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
shingle_author_2 Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
shingle_author_3 Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
shingle_author_4 Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
shingle_catch_all_1 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Physics, Applied, Materials Science
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_2 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Physics, Applied, Materials Science
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_3 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Physics, Applied, Materials Science
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_catch_all_4 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Physics, Applied, Materials Science
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W., Mohite, A. D.
American Association for the Advancement of Science (AAAS)
0036-8075
00368075
1095-9203
10959203
shingle_title_1 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
shingle_title_2 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
shingle_title_3 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
shingle_title_4 Light-induced lattice expansion leads to high-efficiency perovskite solar cells
timestamp 2025-06-30T23:34:06.354Z
titel Light-induced lattice expansion leads to high-efficiency perovskite solar cells
titel_suche Light-induced lattice expansion leads to high-efficiency perovskite solar cells
topic W
V
TE-TZ
SQ-SU
WW-YZ
TA-TD
U
uid ipn_articles_6227560