The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer

Calais, J., Cao, M., Nickols, N. G.
The Society of Nuclear Medicine (SNM)
Published 2018
Publication Date:
2018-04-03
Publisher:
The Society of Nuclear Medicine (SNM)
Print ISSN:
0022-3123
Topics:
Medicine
Published by:
_version_ 1836398874828210176
autor Calais, J., Cao, M., Nickols, N. G.
beschreibung Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
citation_standardnr 6224143
datenlieferant ipn_articles
feed_id 9585
feed_publisher The Society of Nuclear Medicine (SNM)
feed_publisher_url http://www.snm.org/
insertion_date 2018-04-03
journalissn 0022-3123
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The Society of Nuclear Medicine (SNM)
quelle Journal of Nuclear Medicine
relation http://jnm.snmjournals.org/cgi/content/short/59/4/557?rss=1
search_space articles
shingle_author_1 Calais, J., Cao, M., Nickols, N. G.
shingle_author_2 Calais, J., Cao, M., Nickols, N. G.
shingle_author_3 Calais, J., Cao, M., Nickols, N. G.
shingle_author_4 Calais, J., Cao, M., Nickols, N. G.
shingle_catch_all_1 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
Calais, J., Cao, M., Nickols, N. G.
The Society of Nuclear Medicine (SNM)
0022-3123
00223123
shingle_catch_all_2 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
Calais, J., Cao, M., Nickols, N. G.
The Society of Nuclear Medicine (SNM)
0022-3123
00223123
shingle_catch_all_3 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
Calais, J., Cao, M., Nickols, N. G.
The Society of Nuclear Medicine (SNM)
0022-3123
00223123
shingle_catch_all_4 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
Calais, J., Cao, M., Nickols, N. G.
The Society of Nuclear Medicine (SNM)
0022-3123
00223123
shingle_title_1 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
shingle_title_2 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
shingle_title_3 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
shingle_title_4 The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
timestamp 2025-06-30T23:34:01.458Z
titel The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
titel_suche The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer
topic WW-YZ
uid ipn_articles_6224143