Room temperature solid-state quantum emitters in the telecom range
Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-03-31
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Electronic ISSN: |
2375-2548
|
Topics: |
Natural Sciences in General
|
Published by: |
_version_ | 1836398873560481792 |
---|---|
autor | Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. |
beschreibung | On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. |
citation_standardnr | 6223149 |
datenlieferant | ipn_articles |
feed_id | 228416 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-03-31 |
journaleissn | 2375-2548 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science Advances |
relation | http://advances.sciencemag.org/cgi/content/short/4/3/eaar3580?rss=1 |
search_space | articles |
shingle_author_1 | Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. |
shingle_author_2 | Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. |
shingle_author_3 | Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. |
shingle_author_4 | Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. |
shingle_catch_all_1 | Room temperature solid-state quantum emitters in the telecom range On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_2 | Room temperature solid-state quantum emitters in the telecom range On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_3 | Room temperature solid-state quantum emitters in the telecom range On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_catch_all_4 | Room temperature solid-state quantum emitters in the telecom range On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. Zhou, Y., Wang, Z., Rasmita, A., Kim, S., Berhane, A., Bodrog, Z., Adamo, G., Gali, A., Aharonovich, I., Gao, W.-b. American Association for the Advancement of Science (AAAS) 2375-2548 23752548 |
shingle_title_1 | Room temperature solid-state quantum emitters in the telecom range |
shingle_title_2 | Room temperature solid-state quantum emitters in the telecom range |
shingle_title_3 | Room temperature solid-state quantum emitters in the telecom range |
shingle_title_4 | Room temperature solid-state quantum emitters in the telecom range |
timestamp | 2025-06-30T23:34:00.327Z |
titel | Room temperature solid-state quantum emitters in the telecom range |
titel_suche | Room temperature solid-state quantum emitters in the telecom range |
topic | TA-TD |
uid | ipn_articles_6223149 |