Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]

Publication Date:
2018-02-27
Publisher:
The American Society for Microbiology (ASM)
Print ISSN:
0022-538X
Electronic ISSN:
1098-5514
Topics:
Medicine
Published by:
_version_ 1836398812415918080
autor Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
beschreibung Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu 63 and Trp 167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine. IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp 167 blocks the left side of pocket A, causing P1D to conflict with Glu 63 . We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
citation_standardnr 6176344
datenlieferant ipn_articles
feed_id 2375
feed_publisher The American Society for Microbiology (ASM)
feed_publisher_url http://www.asm.org/
insertion_date 2018-02-27
journaleissn 1098-5514
journalissn 0022-538X
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Microbiology (ASM)
quelle Journal of Virology
relation http://jvi.asm.org/cgi/content/short/92/6/e01631-17?rss=1
search_space articles
shingle_author_1 Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
shingle_author_2 Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
shingle_author_3 Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
shingle_author_4 Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
shingle_catch_all_1 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu 63 and Trp 167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine. IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp 167 blocks the left side of pocket A, causing P1D to conflict with Glu 63 . We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_2 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu 63 and Trp 167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine. IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp 167 blocks the left side of pocket A, causing P1D to conflict with Glu 63 . We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_3 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu 63 and Trp 167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine. IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp 167 blocks the left side of pocket A, causing P1D to conflict with Glu 63 . We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_4 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu 63 and Trp 167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine. IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp 167 blocks the left side of pocket A, causing P1D to conflict with Glu 63 . We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., Xia, C.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_title_1 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
shingle_title_2 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
shingle_title_3 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
shingle_title_4 Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
timestamp 2025-06-30T23:33:02.078Z
titel Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
titel_suche Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides [Pathogenesis and Immunity]
topic WW-YZ
uid ipn_articles_6176344