Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America

Publication Date:
2018-02-21
Publisher:
Wiley-Blackwell
Print ISSN:
0886-6236
Electronic ISSN:
1944-9224
Topics:
Biology
Chemistry and Pharmacology
Geography
Geosciences
Physics
Published by:
_version_ 1836398802343297024
autor R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
beschreibung Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO 2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO 2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
citation_standardnr 6169812
datenlieferant ipn_articles
feed_copyright American Geophysical Union (AGU)
feed_copyright_url http://www.agu.org/
feed_id 7532
feed_publisher Wiley-Blackwell
feed_publisher_url http://www.wiley.com/wiley-blackwell
insertion_date 2018-02-21
journaleissn 1944-9224
journalissn 0886-6236
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher Wiley-Blackwell
quelle Global Biogeochemical Cycles
relation http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1002%2F2017GB005790
search_space articles
shingle_author_1 R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
shingle_author_2 R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
shingle_author_3 R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
shingle_author_4 R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
shingle_catch_all_1 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO 2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO 2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
Wiley-Blackwell
0886-6236
08866236
1944-9224
19449224
shingle_catch_all_2 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO 2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO 2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
Wiley-Blackwell
0886-6236
08866236
1944-9224
19449224
shingle_catch_all_3 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO 2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO 2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
Wiley-Blackwell
0886-6236
08866236
1944-9224
19449224
shingle_catch_all_4 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO 2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO 2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
R. G. Najjar, M. Herrmann, R. Alexander, E. W. Boyer, D. Burdige, D. Butman, W.-J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. Pilskaln, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, R. C. Zimmerman
Wiley-Blackwell
0886-6236
08866236
1944-9224
19449224
shingle_title_1 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
shingle_title_2 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
shingle_title_3 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
shingle_title_4 Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
timestamp 2025-06-30T23:32:52.283Z
titel Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
titel_suche Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America
topic W
V
R
TE-TZ
U
uid ipn_articles_6169812