PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer

Publication Date:
2018-02-16
Publisher:
The American Association for Cancer Research (AACR)
Print ISSN:
1078-0432
Electronic ISSN:
1557-3265
Topics:
Medicine
Published by:
_version_ 1836398797769408512
autor Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
beschreibung Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
citation_standardnr 6166108
datenlieferant ipn_articles
feed_id 9363
feed_publisher The American Association for Cancer Research (AACR)
feed_publisher_url http://www.aacr.org/
insertion_date 2018-02-16
journaleissn 1557-3265
journalissn 1078-0432
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Association for Cancer Research (AACR)
quelle Clinical Cancer Research
relation http://clincancerres.aacrjournals.org/cgi/content/short/24/4/834?rss=1
search_space articles
shingle_author_1 Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
shingle_author_2 Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
shingle_author_3 Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
shingle_author_4 Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
shingle_catch_all_1 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
The American Association for Cancer Research (AACR)
1078-0432
10780432
1557-3265
15573265
shingle_catch_all_2 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
The American Association for Cancer Research (AACR)
1078-0432
10780432
1557-3265
15573265
shingle_catch_all_3 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
The American Association for Cancer Research (AACR)
1078-0432
10780432
1557-3265
15573265
shingle_catch_all_4 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., Pan, Y., Hinten, M., Zhang, J., Karnes, R. J., Kohli, M., Westendorf, J. J., Li, B., Zhu, R., Huang, H., Xu, W.
The American Association for Cancer Research (AACR)
1078-0432
10780432
1557-3265
15573265
shingle_title_1 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
shingle_title_2 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
shingle_title_3 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
shingle_title_4 PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
timestamp 2025-06-30T23:32:47.120Z
titel PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
titel_suche PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer
topic WW-YZ
uid ipn_articles_6166108