Aging and neurodegeneration are associated with increased mutations in single human neurons
Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A.
American Association for the Advancement of Science (AAAS)
Published 2018
American Association for the Advancement of Science (AAAS)
Published 2018
Publication Date: |
2018-02-03
|
---|---|
Publisher: |
American Association for the Advancement of Science (AAAS)
|
Print ISSN: |
0036-8075
|
Electronic ISSN: |
1095-9203
|
Topics: |
Biology
Chemistry and Pharmacology
Geosciences
Computer Science
Medicine
Natural Sciences in General
Physics
|
Keywords: |
Neuroscience
|
Published by: |
_version_ | 1836398776752799744 |
---|---|
autor | Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. |
beschreibung | It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. |
citation_standardnr | 6154426 |
datenlieferant | ipn_articles |
feed_id | 25 |
feed_publisher | American Association for the Advancement of Science (AAAS) |
feed_publisher_url | http://www.aaas.org/ |
insertion_date | 2018-02-03 |
journaleissn | 1095-9203 |
journalissn | 0036-8075 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | American Association for the Advancement of Science (AAAS) |
quelle | Science |
relation | http://science.sciencemag.org/cgi/content/short/359/6375/555?rss=1 |
schlagwort | Neuroscience |
search_space | articles |
shingle_author_1 | Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. |
shingle_author_2 | Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. |
shingle_author_3 | Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. |
shingle_author_4 | Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. |
shingle_catch_all_1 | Aging and neurodegeneration are associated with increased mutations in single human neurons Neuroscience It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_2 | Aging and neurodegeneration are associated with increased mutations in single human neurons Neuroscience It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_3 | Aging and neurodegeneration are associated with increased mutations in single human neurons Neuroscience It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_catch_all_4 | Aging and neurodegeneration are associated with increased mutations in single human neurons Neuroscience It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., Walsh, C. A. American Association for the Advancement of Science (AAAS) 0036-8075 00368075 1095-9203 10959203 |
shingle_title_1 | Aging and neurodegeneration are associated with increased mutations in single human neurons |
shingle_title_2 | Aging and neurodegeneration are associated with increased mutations in single human neurons |
shingle_title_3 | Aging and neurodegeneration are associated with increased mutations in single human neurons |
shingle_title_4 | Aging and neurodegeneration are associated with increased mutations in single human neurons |
timestamp | 2025-06-30T23:32:27.978Z |
titel | Aging and neurodegeneration are associated with increased mutations in single human neurons |
titel_suche | Aging and neurodegeneration are associated with increased mutations in single human neurons |
topic | W V TE-TZ SQ-SU WW-YZ TA-TD U |
uid | ipn_articles_6154426 |