Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation

Kasimatis, K. R., Phillips, P. C.
Genetics Society of America (GSA)
Published 2018
Publication Date:
2018-01-05
Publisher:
Genetics Society of America (GSA)
Electronic ISSN:
2160-1836
Topics:
Biology
Published by:
_version_ 1839207836046852096
autor Kasimatis, K. R., Phillips, P. C.
beschreibung Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
citation_standardnr 6130032
datenlieferant ipn_articles
feed_id 169615
feed_publisher Genetics Society of America (GSA)
feed_publisher_url http://www.genetics-gsa.org/
insertion_date 2018-01-05
journaleissn 2160-1836
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher Genetics Society of America (GSA)
quelle G3: Genes, Genomes, Genetics
relation http://www.g3journal.org/cgi/content/short/8/1/353?rss=1
search_space articles
shingle_author_1 Kasimatis, K. R., Phillips, P. C.
shingle_author_2 Kasimatis, K. R., Phillips, P. C.
shingle_author_3 Kasimatis, K. R., Phillips, P. C.
shingle_author_4 Kasimatis, K. R., Phillips, P. C.
shingle_catch_all_1 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Kasimatis, K. R., Phillips, P. C.
Genetics Society of America (GSA)
2160-1836
21601836
shingle_catch_all_2 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Kasimatis, K. R., Phillips, P. C.
Genetics Society of America (GSA)
2160-1836
21601836
shingle_catch_all_3 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Kasimatis, K. R., Phillips, P. C.
Genetics Society of America (GSA)
2160-1836
21601836
shingle_catch_all_4 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Kasimatis, K. R., Phillips, P. C.
Genetics Society of America (GSA)
2160-1836
21601836
shingle_title_1 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
shingle_title_2 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
shingle_title_3 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
shingle_title_4 Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
timestamp 2025-07-31T23:41:15.488Z
titel Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
titel_suche Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation
topic W
uid ipn_articles_6130032