Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF
I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis
Wiley-Blackwell
Published 2018
Wiley-Blackwell
Published 2018
Publication Date: |
2018-01-04
|
---|---|
Publisher: |
Wiley-Blackwell
|
Print ISSN: |
0148-0227
|
Topics: |
Geosciences
Physics
|
Published by: |
_version_ | 1836398730235871233 |
---|---|
autor | I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis |
beschreibung | High resolution multi-spacecraft Swarm data are used to examine magnetosphere-ionosphere coupling (MIC) during a period of northward IMF on 31 st May 2014. The observations reveal a prevalence of unexpectedly large amplitude (〉100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 seconds apart along-track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling, but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements. |
citation_standardnr | 6128926 |
datenlieferant | ipn_articles |
feed_copyright | American Geophysical Union (AGU) |
feed_copyright_url | http://www.agu.org/ |
feed_id | 7531 |
feed_publisher | Wiley-Blackwell |
feed_publisher_url | http://www.wiley.com/wiley-blackwell |
insertion_date | 2018-01-04 |
journalissn | 0148-0227 |
publikationsjahr_anzeige | 2018 |
publikationsjahr_facette | 2018 |
publikationsjahr_intervall | 7984:2015-2019 |
publikationsjahr_sort | 2018 |
publisher | Wiley-Blackwell |
quelle | Journal of Geophysical Research JGR - Space Physics |
relation | http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1002%2F2017JA024713 |
search_space | articles |
shingle_author_1 | I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis |
shingle_author_2 | I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis |
shingle_author_3 | I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis |
shingle_author_4 | I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis |
shingle_catch_all_1 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF High resolution multi-spacecraft Swarm data are used to examine magnetosphere-ionosphere coupling (MIC) during a period of northward IMF on 31 st May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 seconds apart along-track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling, but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements. I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis Wiley-Blackwell 0148-0227 01480227 |
shingle_catch_all_2 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF High resolution multi-spacecraft Swarm data are used to examine magnetosphere-ionosphere coupling (MIC) during a period of northward IMF on 31 st May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 seconds apart along-track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling, but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements. I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis Wiley-Blackwell 0148-0227 01480227 |
shingle_catch_all_3 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF High resolution multi-spacecraft Swarm data are used to examine magnetosphere-ionosphere coupling (MIC) during a period of northward IMF on 31 st May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 seconds apart along-track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling, but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements. I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis Wiley-Blackwell 0148-0227 01480227 |
shingle_catch_all_4 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF High resolution multi-spacecraft Swarm data are used to examine magnetosphere-ionosphere coupling (MIC) during a period of northward IMF on 31 st May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 seconds apart along-track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling, but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements. I. P. Pakhotin, I. R. Mann, R. L. Lysak, D. J. Knudsen, J. W. Gjerloev, I. J. Rae, C. Forsyth, K. R. Murphy, D. M. Miles, L. G. Ozeke, G. Balasis Wiley-Blackwell 0148-0227 01480227 |
shingle_title_1 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
shingle_title_2 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
shingle_title_3 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
shingle_title_4 | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
timestamp | 2025-06-30T23:31:43.536Z |
titel | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
titel_suche | Diagnosing the role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Non-Stationary Magnetic Perturbations During an Interval of Northward IMF |
topic | TE-TZ U |
uid | ipn_articles_6128926 |