Search Results - (Author, Cooperation:Z. D. Sharp)

Showing 1 - 13 results of 13, query time: 0.36s Refine Results
  1. 1
    C. B. Agee ; N. V. Wilson ; F. M. McCubbin ; K. Ziegler ; V. J. Polyak ; Z. D. Sharp ; Y. Asmerom ; M. H. Nunn ; R. Shaheen ; M. H. Thiemens ; A. Steele ; M. L. Fogel ; R. Bowden ; M. Glamoclija ; Z. Zhang ; S. M. Elardo
    American Association for the Advancement of Science (AAAS)
    Published 2013
    Staff View
    Publication Date:
    2013-01-05
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Carbon/analysis ; Crystallization ; Iron/analysis ; Manganese/analysis ; *Mars ; *Meteoroids ; North America ; Oxygen Isotopes/analysis ; Radiometric Dating ; Water/analysis/*chemistry
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    S. Jasechko ; Z. D. Sharp ; J. J. Gibson ; S. J. Birks ; Y. Yi ; P. J. Fawcett
    Nature Publishing Group (NPG)
    Published 2014
    Staff View
    Publication Date:
    2014-02-14
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Fresh Water/*analysis ; Plant Transpiration/*physiology ; Plants/*metabolism ; *Water Movements
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  3. 3
    S. Jasechko ; Z. D. Sharp ; J. J. Gibson ; S. J. Birks ; Y. Yi ; P. J. Fawcett
    Nature Publishing Group (NPG)
    Published 2013
    Staff View
    Publication Date:
    2013-04-05
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Atmosphere/chemistry ; Carbon Dioxide/analysis/metabolism ; Ecosystem ; Fresh Water/*analysis/chemistry ; Lakes ; Oceans and Seas ; Photosynthesis ; Plant Transpiration/*physiology ; Plants/*metabolism ; Rain ; Rivers ; Uncertainty ; Volatilization ; *Water Movements
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  4. 4
    SHARP, Z. D. ; JENKIN, G. R. T.

    Oxford, UK : Blackwell Publishing Ltd
    Published 1994
    Staff View
    ISSN:
    1525-1314
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Geosciences
    Notes:
    The intracrystalline diffusion rate of oxygen in diopside was constrained based on natural isotopic variations from a granulite facies marble from Cascade Slide, Adirondacks (New York, USA). The oxygen isotope compositions of the diopsides, measured as a function of grain size, are nearly constant (20.9 ± 0.3‰ vs. SMOW) over the entire measured size range (0.3–3.2 mm diameter). The δ18O values of the cores of calcite grains are 23.0‰. Temperature estimates based on the Δ18O(calcite-diopside) are 800d̀C, in agreement with the highest previous thermometric estimates for these rocks.The lack of isotopic variation in the diopsides as a function of grain size requires that the oxygen intracrystalline diffusion rate in diopside from the Adirondack samples was very slow. The maximum diffusion rates (D800d̀C parallel to the c-axis) were calculated with an infinite reservoir model (IRM) and a finite reservoir model (FRM) that incorporates mineral modal abundances and initial isotopic variations. For an assumed activation energy (Q) = 100 kJ/mol, the IRM diffusion rate estimate of 1.6 times 10-20cm2/s is two orders of magnitude faster than from the FRM; at Q=500kJ/mol, the D800d̀C estimate for both methods is c. 5.6 times 10-20 cm2/s. The present results require that a hydrothermal fluid significantly enhances the diffusion rate of oxygen in diopside if previous data are correct.The δ18O(SMOW) and δ13C(PDB) values of the calcite, measured in situ with a CO2 laser, are 22.9 ± 0.3, 0.1±0.3‰ in the grain cores, 22.1 ±0.3, 0.2 ±0.1‰ at the grain boundaries and 21.7 ±0.4, -0.6±0.1‰ abutting diopside grains. The δ18O and δ13δC values measured conventionally are: crystal cores, 22.96, -0.95‰; abutting diopside grains, 22.38, -0.93‰; bulk, 22.79, -0.95%. Use of the bulk δ18O(calcite) values for thermometry yields unreasonably high temperatures. The lower δ18O values at the calcite grain boundaries are not due to retrograde diffusional exchange with the diopside, they are thought to be a result of a late retrograde fluid infiltration.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  5. 5
    Larson, T. E. ; Sharp, Z. D.

    Oxford, UK : Blackwell Science Inc
    Published 2003
    Staff View
    ISSN:
    1525-1314
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Geosciences
    Notes:
    The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one-dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures 〉580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite-in isograd is coincident with the staurolite-out isograd in pelitic schist, and K-feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite-bearing pelitic schist. Muscovite-rich aluminous schist locally preserves the Al2SiO5 polymorph triple-point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co-nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K-feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (〈500 °C).
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  6. 6
    LARSON, T. E. ; SHARP, Z. D.

    Oxford, UK : Blackwell Science Inc
    Published 2005
    Staff View
    ISSN:
    1525-1314
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Geosciences
    Notes:
    Oxygen-isotope compositions of kyanite, andalusite, prismatic sillimanite and fibrolite from the Proterozoic terrane in the Truchas Mountains, New Mexico differ from one another, suggesting that these minerals did not grow in equilibrium at the Al2SiO5 (AS) polymorph-invariant point as previously suggested. Instead, oxygen-isotope temperature estimates indicate that growth of kyanite, andalusite and prismatic sillimanite occurred at c. 575, 615 and 640 °C respectively. Temperature estimates reported in this paper are interpreted as those of growth for the different AS polymorphs, which are not necessarily the same as peak metamorphic temperatures for this terrane. Two distinct temperature estimates of c. 580 °C and c. 700 °C are calculated for most fibrolite samples, with two samples yielding clear evidence of quartz-fibrolite oxygen-isotope disequilibrium. These data indicate that locally, and potentially regionally, oxygen-isotope disequilibrium between quartz and fibrolite may have resulted from rapid fibrolite nucleation. Pressures of mineral growth that were extrapolated from oxygen-isotope thermometry results and calculated using petrological constraints suggest that kyanite and one generation of fibrolite grew during M1 at 5 kbar, and that andalusite, prismatic sillimanite and a second generation of fibrolite grew during M2 at 3.5 kbar. M1 and M2 therefore represent two distinct metamorphic events that occurred at different crustal levels. The ability of the AS polymorphs to retain δ18O values of crystallization make these minerals ideal to model prograde-growth histories of mineral assemblages in metamorphic terranes and to understand more clearly the pressure–temperature histories of multiple metamorphic events.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  7. 7
    Barnes, J. D. ; Selverstone, J. ; Sharp, Z. D.

    Oxford, UK : Blackwell Science Inc
    Published 2004
    Staff View
    ISSN:
    1525-1314
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Geosciences
    Notes:
    The Greiner shear zone in the Tauern Window, Eastern Alps, changes from a zone of distributed (dominantly sinistral) shear in supracrustal rocks to a series of narrow, gully forming dextral splays where it enters basement gneisses. Within these splays, granodiorite is transformed into quartz-poor biotite and/or chlorite schists, reflecting hydration, removal of Si, Ca and Na, and concentration of Fe, Mg and Al. Stable isotope analyses show a prominent increase in δD and a decrease in δ18O from granodiorite into the shear zones. These changes indicate significant channelized flow of an externally derived, low-δ18O, high-δD fluid through the shear zones. The shear zone schists are chemically similar to blackwall zones developed around serpentinite bodies elsewhere in the Greiner zone and the stable isotope data support alteration via serpentinite-derived fluid. Monazite in schist from one shear zone yields spot dates of 29–20 Ma, indicating that the fluid influx and switch from sinistral to dextral shear occurred at or shortly after the thermal peak of the Alpine orogeny (c. 30 Ma). We suggest that Alpine metamorphism of serpentinites released large amounts of high-δD, low-δ18O, Si-undersaturated, Fe + Mg-saturated fluids that became channelized along prior zones of weakness in the granodiorite. Infiltration of this fluid facilitated growth of chlorite and biotite, which in turn localized later dextral strain in the narrow splays via cleavage-parallel slip. This dextral strain event can be linked to other structures that accommodated tectonic escape of major crustal blocks during dextral transpression in the Eastern Alps. This study shows that serpentinite devolatilization can play an important role in modifying both the chemistry and rheology of surrounding rocks during orogenesis.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  8. 8
    Barnes, J. D. ; Brearley, A. J. ; Chaussidon, M. ; Fischer, T. P. ; Kamenetsky, V. S. ; Sharp, Z. D.

    [s.l.] : Nature Publishing Group
    Published 2007
    Staff View
    ISSN:
    1476-4687
    Source:
    Nature Archives 1869 - 2009
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Notes:
    [Auszug] Chlorine in the Earth is highly depleted relative to carbonaceous chondrites and solar abundances. Knowledge of the Cl concentrations and distribution on Earth is essential for understanding the origin of these depletions. Large differences in the stable chlorine isotope ratios of meteoritic, ...
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  9. 9
    Sharp, Z. D. ; O'Neil, J. R. ; Essene, E. J.
    Springer
    Published 1988
    Staff View
    ISSN:
    1432-0967
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Geosciences
    Notes:
    Abstract The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730±50° C and 5.5±0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500° C (Δ qz − mt=10.0‰) within 2–3 meters of the orthogneiss contact to 600° C (Δ qz − mt=8.0‰) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock δ 18Owr value of 8.0±0.6‰. The greater Δ qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (∼800° C/Ma). In order to preserve the 600° C isotopic temperature, the diffusion coefficient D (for α-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5×10−16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D 0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion coefficient inferred from the Wind River terrane and that measured experimentally is almost certainly due to the enhancement of exchange by the presence of water in the laboratory experiments. Cooling rate estimates were also determined for iron formation retrograded under water-rich conditions. Application of the experimentally determined data to these rocks results in a reasonable cooling rate estimate, supporting the conclusion that the presence of water greatly enhances oxygen diffusion.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  10. 10
    Sharp, Z. D. ; Essene, E. J. ; Hunziker, J. C.
    Springer
    Published 1993
    Staff View
    ISSN:
    1432-0967
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Geosciences
    Notes:
    Abstract Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The δ18O(smow) values of the quartz (after coesite) (δ18O=8.1 to 8.6‰, n=6), phengite (6.2 to 6.4‰, n=3), kyanite (6.1‰, n=2), garnet (5.5 to 5.8‰, n=9), ellenbergerite (6.3‰, n=1) and rutile (3.3 to 3.6‰, n=3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700–750 °C. Minimum pressures are 31–32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc+kyanite=pyrope+coesite+H2O, the a(H2O) must be reduced to 0.4–0.75 at 700–750 °C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X(CO2)〉0.02 (T=750 °C; P=30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are ∼680 °C/30 kb at a(H2O)=1.0 and are calculated to be ∼70°C higher at a(H2O)=0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34±2 kb, 700–750 °C and 0.4–0.75. The oxygen isotope fractionation between quartz (δ18O=11.6‰) and garnet (δ18O=8.7‰) in the surrounding orthognesiss is identical to that in the coesitebearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (δD(SMOW)=-27 to-32‰), on secondary talc and chlorite rite after pyrope (δD=-39 to -44‰) and on the surrounding biotite (δD=-64‰) and phengite (δD=-44‰) gneiss. All phases appear to be in nearequilibrium. The very high δD values for the primary hydrous phases is consistent with an initial oceanicderived/connate fluid source. The fluid source for the retrograde talc+chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar δD, but dissimilar δ18O values of the coesite bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  11. 11
    Sharp, Z. D. ; Essene, E. J. ; Smyth, J. R.
    Springer
    Published 1992
    Staff View
    ISSN:
    1432-0967
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Geosciences
    Notes:
    Abstract The oxygen isotope compositions of coesite, sanidine, kyanite, clinopyroxene and garnet were measured in an ultra-high pressure-temperature grospydite from the Roberts Victor kimberlite, South Africa. The δ18O values (per mil v. SMOW) of each phase and (1 σ) are as follows: coesite, 8.62 (0.31); sanidine, 8.31 (0.02); kyanite, 7.98 (0.08); pyroxene, 7.63 (0.11); garnet, 7.53 (0.03). In situ analyses of the coesite with the laser extraction system are δ18O=9.35 (0.08), n=4, demonstrating that the coesite is homogeneous. The coesite has partially inverted to polycrystalline quartz and the pyroxene is extensively altered during uplift. The larger scatter for the mineral separate coesite and pyroxene data may be due to partial reequilibration between the decompression-related breakdown products of these two phases. The anomalously high δ18O value of the grospydite (δ18Owholerock=7.7‰) is consistent with altered oceanic crust as a source rock. Temperature estimates from a linear regression of all the data to three different published calibrations correspond to an equilibrium temperature of 1310±80°C. The calculated isotopic pressure effect is to lower these estimates by about 40°C at 40 kb. The estimated temperature based on Al−Si disorder in sanidine is 1200±100°C and that from Fe−Mg exchange thermometry between garnet and clinopyroxene is 1100±50°C. Given the large errors associated with thermometry at such high temperatures, it is concluded that the xenolith equilibrated that 1200±100°C. Pressure estimates are 45±5 kb, based on dilution of the univariant equilibria albite = jadeite + coesite and 2 kyanite + 3 diopside = grossular + pyrope + 2coesite. Zoning in the outer 20 μm of the feldspar from Ab0.8 to Ab16 indicates rapid decompression to 25 kb or less. The isotopic temperature estimates are the highest ever obtained and combined with the high degree of Al−Si disorder in sanidine require rapid cooling from ultra-high temperatures. It is inferred that the xenolith was sampled at the time of equilibration, providing a point on the upper Cretaceous geotherm in the mantle below South Africa.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  12. 12
    Kirschner, D. L. ; Masson, H. ; Sharp, Z. D.
    Springer
    Published 1999
    Staff View
    ISSN:
    1432-0967
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Geosciences
    Notes:
    Abstract The δ18O, δ13C and 87Sr/86Sr values of calcite and organic matter were measured for carbonate mylonites from numerous thrusts in the Helvetic Alps. Carbonate mylonites in most of the thrusts retain essentially unaltered protolith δ18O and δ13C values, consistent with there having been little to no advection of isotopically distinct fluid through these faults. Only carbonate mylonites from the basal thrusts of the largest nappes have δ18O and/or δ13C values that differ from those of their protoliths. The zone of isotopic alteration/exchange is confined to c. 10 to 20 meters of these fault contacts. We propose the fluids that migrated through these faults contained variable amounts of organically derived carbon and radiogenic strontium, and were probably derived from dewatering of the sedimentary rocks and prograde metamorphic reactions in the nappes' root zones. Apart from the basal thrusts of the largest nappes that behaved as narrow, laterally extensive conduits for fluids, there is little isotopic evidence that large quantities of fluids passed through most of the carbonate-hosted thrusts in the Helvetic Alps.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  13. 13
    Spangenberg, J. ; Sharp, Z. D. ; Fontboté, L.
    Springer
    Published 1995
    Staff View
    ISSN:
    1432-1866
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Geosciences
    Notes:
    Abstract The aim of the present communication is to emphasize that some variations of the measured δ 13C and δ 18O values are apparent, and due to analytical interferences caused by the presence of sulfur and organosulfur compounds in the analyzed carbonates. This is particularly relevant for isotopic studies on carbonate-hosted mineral deposits, where the nearly ubiquitous association of the host carbonates with organic matter and sulfides can certainly affect the metallogenetic interpretations. In this work two methods were used to overcome the disturbing effects of sulfides and organic matter: (1) sample pretreatment following the method proposed by Charef and Sheppard (1984), combining the oxidation of organic matter with sodium hypochlorite and trapping of the sulfur species with silver phosphate; and (2) laser-based microprobe extraction. Apparent isotopic variations in sparry dolomite from a single hand sample of zebra ore from the MVT Zn-Pb deposit, San Vicente, central Peru, are as large as 6‰ δ 13C and 4‰ δ 18O. These variations are reduced to several tenths of a per mil when the samples are pretreated. A careful examination of the effects of treatment with NaOCl and/or Ag3PO4 in relation to the concentration of sulfide inclusions indicates that the main disturbing effects for δ 13C values are the presence of sulfur species and organic matter, whereas the δ 18O values are mainly affected by the presence of sulfides. Fine- and medium-grained replacement carbonates from MVT and other sediment-hosted base metal deposits are potentially the most affected during isotope analysis, due to the common presence of organic matter and sulfides. Using in situ laser microprobe techniques, it is possible to determine isotopic variations at a sub-millimeter scale. Our results show that laser extraction analysis allows a more precise sampling of the carbonate minerals, and minimizes contamination of the sample with sulfides and to some extent with intergrown organic matter. However, there is an isotopic shift associated with the laser extraction technique, of the order of 0.5–1‰ for δ 13C and δ 18O values.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses