Search Results - (Author, Cooperation:R. D. Gregory)

Showing 1 - 18 results of 18, query time: 0.28s Refine Results
  1. 1
    D. P. Tittensor ; M. Walpole ; S. L. Hill ; D. G. Boyce ; G. L. Britten ; N. D. Burgess ; S. H. Butchart ; P. W. Leadley ; E. C. Regan ; R. Alkemade ; R. Baumung ; C. Bellard ; L. Bouwman ; N. J. Bowles-Newark ; A. M. Chenery ; W. W. Cheung ; V. Christensen ; H. D. Cooper ; A. R. Crowther ; M. J. Dixon ; A. Galli ; V. Gaveau ; R. D. Gregory ; N. L. Gutierrez ; T. L. Hirsch ; R. Hoft ; S. R. Januchowski-Hartley ; M. Karmann ; C. B. Krug ; F. J. Leverington ; J. Loh ; R. K. Lojenga ; K. Malsch ; A. Marques ; D. H. Morgan ; P. J. Mumby ; T. Newbold ; K. Noonan-Mooney ; S. N. Pagad ; B. C. Parks ; H. M. Pereira ; T. Robertson ; C. Rondinini ; L. Santini ; J. P. Scharlemann ; S. Schindler ; U. R. Sumaila ; L. S. Teh ; J. van Kolck ; P. Visconti ; Y. Ye
    American Association for the Advancement of Science (AAAS)
    Published 2014
    Staff View
    Publication Date:
    2014-10-04
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    *Biodiversity ; *Conservation of Natural Resources ; *Extinction, Biological
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Staff View
    Publication Date:
    2016-04-02
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Animal Migration ; Animals ; Biodiversity ; *Birds ; Breeding ; *Climate Change ; Ecological Parameter Monitoring ; Europe ; Population Dynamics ; United States
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  3. 3
    Staff View
    Publication Date:
    2013-01-19
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Alleles ; *Biodiversity ; *Environmental Monitoring ; Genetic Variation ; Population
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  4. 4
    Staff View
    Publication Date:
    2014-06-07
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Agriculture/*trends ; *Biodiversity ; *European Union ; *Policy
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  5. 5
    Staff View
    ISSN:
    1534-4681
    Keywords:
    Acral lentiginous melanoma ; Plantar flap
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Medicine
    Notes:
    Abstract Background: Acral lentiginous melanoma continues to be difficult to diagnose despite an overall trend toward early identification of smaller and thin lesions. The insidious nature of this lesion often precludes primary closure of the surgical defect once it is excised, adding to the reconstructive complexity. Local flaps on the plantar foot offer an option for reconstruction when the defect is of intermediate size. Methods: Eight patients (5 men and 3 women, with an average age of 58 years) who underwent plantar flap reconstruction for defects isolated to the weight-bearing heel were retrospectively reviewed. Results: The average depth of the melanoma was 2.82 mm. Surgical margins were 2 cm or less in seven of the eight patients. Partial flap necrosis occurred in one patient, and loss of part or all of the skin grafts was noted in two patients. Currently five patients are alive with no evidence of disease. Conclusion: The plantar flap can provide local well-vascularized tissue for weight-bearing areas where skin grafting alone may not be appropriate. Coverage of these areas with well-padded flaps led to ambulation in all of the patients studied. We believe this flap offers durable coverage for medium-sized defects in acral lentiginous melanoma.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  6. 6
    Evans, Gregory R. D. ; Ryan, James J.
    Springer
    Published 1994
    Staff View
    ISSN:
    1432-5241
    Keywords:
    Breast reduction ; Adolescent females ; Modified McKissock technique
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Medicine
    Notes:
    Abstract Despite relatively few complications with reduction mammaplasty, there has been some hesitance to perform the procedure on the teenage patient. To examine the questions about teenage reduction, 16 teenage female patients were evaluated, all undergoing a modified McKissock technique. Followup averaging 42 months was obtained on 15 patients. Two complications were recorded. Subjective nipple sensation was the same or increased in 60% of our patient group. All patients were satisfied with their surgical results and relief of symptoms. The study revealed that reduction mammaplasty is a safe, viable surgical option for the adolescent female. Psychological, physical, and emotional symptoms are relieved.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  7. 7
    Kendall, K. ; Gregory, R. D.
    Springer
    Published 1987
    Staff View
    ISSN:
    1573-4803
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes:
    Abstract The brittle fracture of thin radially edge-cracked discs has been studied in three loading situations: edge opening, pin loading and diametral compression. Theoretical equations for these configurations are given and compared critically with experimental tests on polymethyl-methacrylate samples. The edge-opening geometry was the best test overall, though all three systems were advantageous when compared with other common toughness tests because of their exact theory, simple sample preparation, facile machining, easy precracking, straight-forward loading and low propagation forces.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  8. 8
    Kendall, K. ; Clegg, W. J. ; Gregory, R. D.
    Springer
    Published 1991
    Staff View
    ISSN:
    1573-4811
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  9. 9
    Gregory, R. D. ; Keymer, A. E. ; Harvey, P. H.
    Springer
    Published 1996
    Staff View
    ISSN:
    1572-9710
    Keywords:
    Helminths ; vertebrates ; parasite richness ; sampling effort ; comparative method
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Biology
    Notes:
    The numbers of intestinal helminth species (parasite richnesS) recorded from each of 488 vertebrate host species are compared using data compiled from the published literature. Associations between parasite richness, sampling effort, host size and host habitat (aquatic versus terrestrial) are assessed using a method designed to control for phylogenetic association. Parasite richness increases with the number of surveys on which each estimate of parasite richness is based (sampling effort). When the effects of sampling effort are controlled for, there remains a strong positive relationship between parasite richness and host body size. There is no tendency for aquatic hosts to harbour more parasite species than terrestrial hosts independently of differences in sampling effort and body size. The results are interpreted in the context of hosts representing habitats for parasite colonization, resource allocation between parasite species, and the age of the major mammalian radiations.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  10. 10
    Gregory, R. D.
    Springer
    Published 1989
    Staff View
    ISSN:
    1573-2673
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents:
    Résumé Un disque circulaire de rayon ”a„, en un matériau homogène, isotrope et élastique linéaire, comporte une fissure radiale de bord de longueur ”b„. Le disque tourne à vitesse angulaire constante autour d'un axe normal passant par son centre dans les limites de théorie linéaire à deux dimensions. On résout le problème de la détermination des champs de contraintes et déplacements dans le disque, sous une forme exacte ou sous une forme fermée. En particulier, le facteur d'intensité de contraintes et la COD sont évalués en condition d'état plan de tension et d'état plan de déformation pour toute longueur de fissure comprise entre 0 et 2a et pour toute valeur de constantes élastiques.
    Notes:
    Abstract A circular disc of radius a, made of homogeneous, isotropic, linearly elastic material, contains a radial edge crack of length b. The disc is rotating with constant angular velocity about an axis through its centre and perpendicular to its plane. The problem of determining the resulting stress and displacement fields throughout the disc is solved (within the two-dimensional linear theory) exactly and in closed form. In particular the stress intensity factor and the crack opening displacement are evaluated for both the plane stress and plane strain cases with any crack length b (0〈b〈2a) and any values of the elastic constants.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  11. 11
    Gregory, R. D. ; Wan, F. Y. M.
    Springer
    Published 1994
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract At the clamped edge of a thin plate, the interior transverse deflection ω(x 1, x2) of the mid-plane x 3=0 is required to satisfy the boundary conditions ω=ϖω/ϖn=0. But suppose that the plate is not held fixed at the edge but is supported by being bonded to another elastic body; what now are the boundary conditions which should be applied to the interior solution in the plate? For the case in which the plate and its support are in two-dimensional plane strain, we show that the correct boundary conditions for ω must always have the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakqaabeqaaiaabEhacaqGTaWa% aSaaaeaacaGG0aGaae4vamaaCaaaleqabaGaamOqaaaaaOqaaiaaco% dadaqadaqaaiaacgdacqGHsislcaqG2baacaGLOaGaayzkaaaaaiaa% bIgadaahaaWcbeqaaiaackdaaaGcdaWcaaqaaiaabsgadaahaaWcbe% qaaiaackdaaaGccaqG3baabaGaaeizaiaabIhafaqabeGabaaajaaq% baqcLbkacaGGYaaajaaybaqcLbkacaGGXaaaaaaakiabgUcaRmaala% aabaGaaiinaiaabEfadaahaaWcbeqaaiaadAeaaaaakeaacaGGZaWa% aeWaaeaacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGOb% WaaWbaaSqabeaacaGGZaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaa% caGGZaaaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaa% saaiaacodaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0Jaaiimaiaa% cYcaaeaadaWcaaqaaiaabsgacaqG3baabaGaaeizaiaabIhaliaacg% daaaGccqGHsisldaWcaaqaaiaacsdacqqHyoqudaahaaWcbeqaaiaa% bkeaaaaakeaacaGGZaWaaeWaaeaacaGGXaGaeyOeI0IaaeODaaGaay% jkaiaawMcaaaaacaqGObWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGG% YaaaaOGaae4DaaqaaiaabsgacaqG4bqbaeqabiqaaaqcaauaaKqzGc% GaaiOmaaqcaawaaKqzGcGaaiymaaaaaaGccqGHRaWkdaWcaaqaaiaa% csdacqqHyoqudaahaaWcbeqaaiaabAeaaaaakeaacaGGZaWaaeWaae% aacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaWba% aSqabeaacaGGYaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGGZa% aaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaasaaiaa% codaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0JaaiimaiaacYcaaa% aa!993A!\[\begin{gathered}{\text{w - }}\frac{{4{\text{W}}^B }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4{\text{W}}^F }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^3 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4\Theta ^{\text{F}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\end{gathered}\]with exponentially small error as L/h→∞, where 2h is the plate thickness and L is the length scale of ω in the x 1-direction. The four coefficients W B, WF, Θ B , Θ F are computable constants which depend upon the geometry of the support and the elastic properties of the support and the plate, but are independent of the length of the plate and the loading applied to it. The leading terms in these boundary conditions as L/h→∞ (with all elastic moduli remaining fixed) are the same as those for a thin plate with a clamped edge. However by obtaining asymptotic formulae and general inequalities for Θ B , W F, we prove that these constants take large values when the support is ‘soft’ and so may still have a strong influence even when h/L is small. The coefficient W F is also shown to become large as the size of the support becomes large but this effect is unlikely to be significant except for very thick plates. When h/L is small, the first order corrected boundary conditions are w=0,% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaadaWcaaqaaiaabsgacaqG% 3baabaGaaeizaiaabIhaliaacgdaaaGccqGHsisldaWcaaqaaiaacs% dacqqHyoqudaahaaWcbeqaaiaabkeaaaaakeaacaGGZaWaaeWaaeaa% caGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaSaaae% aacaqGKbWaaWbaaSqabeaacaGGYaaaaOGaae4DaaqaaiaabsgacaqG% 4bqbaeqabiqaaaqcaauaaKqzGcGaaiOmaaqcaawaaKqzGcGaaiymaa% aaaaGccqGH9aqpcaGGWaGaaiilaaaa!5DD4!\[\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} = 0,\]which correspond to a hinged edge with a restoring couple proportional to the angular deflection of the plate at the edge.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  12. 12
    Gregory, R. D.
    Springer
    Published 1980
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract For the problem of bending of a semi-infinite strip x≥0, −1≤y≤1, with the sides y=±1 clamped, we give a proof that the end-data % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaarmWu51MyVXgaiuGacqWFgpGzdaWgaaWcbaGaaeiEaiaabIha% aeqaaGqbaOGae4hiaaIaaiikaiaaicdacaGGSaGae4hiaaIaamyEai% aacMcacqGFGaaicqGH9aqpcqGFGaaicaWGMbGaaiikaiaadMhacaGG% PaGaaiilaaqaaiab-z8aMnaaBaaaleaacaqG5bGaaeyEaaqabaGccq% GFGaaicaGGOaGaaGimaiaacYcacqGFGaaicaWG5bGaaiykaiab+bca% Giabg2da9iab+bcaGiaadAgacaGGOaGaamyEaiaacMcacaGGSaaaaa% a!5D6D!\[\begin{array}{l} \phi _{{\rm{xx}}} (0, y) = f(y), \\ \phi _{{\rm{yy}}} (0, y) = f(y), \\ \end{array}\] where f(y), g(y) are ‘arbitrary’ independent functions prescribed on (−1,1), may be expanded as a series of the bi-orthogonal Papkovich-Fadle eigenfunctions for the strip. This represents an advance on the standard work of R. T. C. Smith [6], who proved such an expansion, but under conditions which are often not satisfied in practice. In particular we are able to solve this bi-harmonic boundary value problem when f, g do not satisfy the side conditions % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaacaWGMbGaaiikaiabgglaXkaaigdacaGGPaqedmvETj2BSbac% faGae8hiaaIaeyypa0Jae8hiaaIaamOzamaaCaaaleqabaGaai4jaa% aakiab-bcaGiaacIcacqGHXcqScaaIXaGaaiykaiab-bcaGiabg2da% 9iab-bcaGiaaicdacaGGSaaabaGaam4zaiaacIcacqGHXcqScaaIXa% Gaaiykaiab-bcaGiabg2da9iab-bcaGiaadEgadaahaaWcbeqaaiaa% cEcaaaGccqWFGaaicaGGOaGaeyySaeRaaGymaiaacMcacqWFGaaicq% GH9aqpcqWFGaaicaaIWaGaaiilaaaaaa!6222!\[\begin{array}{l} f( \pm 1) = f^' ( \pm 1) = 0, \\ g( \pm 1) = g^' ( \pm 1) = 0, \\ \end{array}\]and when the ‘conditions of consistency’ % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qmaeaacaWGNbGaaiikaiaadMhacaGGPaqedmvETj2BSbacfaGa% e8hiaaIaamizaiaadMhacqWFGaaicqWF9aqpcqWFGaaidaWdXaqaai% aadMhacaWGNbGaaiikaiaadMhacaGGPaGae8hiaaIaamizaiaadMha% cqWFGaaicqGH9aqpcqWFGaaicaaIWaaaleaacqWFsislcqWFXaqmae% aacqWFXaqma0Gaey4kIipaaSqaaiabgkHiTiaaigdaaeaacaaIXaaa% niabgUIiYdaaaa!5A1B!\[\int_{ - 1}^1 {g(y) dy = \int_{ - 1}^1 {yg(y) dy = 0} } \]are not satisfied. The present completeness proof thus answers questions raised recently (in the mathematically equivalent context of Stokes flow) by Joseph [3], and Joseph and Sturges [5], who showed that if the side conditions (A), (B) are relaxed then the corresponding eigenfunction series may still converge; but they left open the more difficult question of whether these series still converge to the data. The method of proof used here also succeeds in proving a corresponding completeness theorem for the Williams eigenfunctions for the wedge with the data. % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaadaabciqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaa% daqadiqaamaalaaabaGaaGymaaqaaiaadkhaaaqedmvETj2BSbacfi% Gae8NXdygacaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaamOCaiab% g2da9iaaigdaaeqaaGqbaOGae4hiaaIaeyypa0Jae4hiaaIaamOzai% aacIcacqaH4oqCcaGGPaGaaiilaaqaamaaeiGabaWaaSaaaeaacqGH% ciITdaahaaWcbeqaaiaaikdaaaGccqaHgpGzaeaacqGHciITcqaH4o% qCdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaceaadaWcaaqaaiaaigda% aeaacaWGYbaaaiab-z8aMbGaayjkaiaawMcaaaGaayjcSdWaaSbaaS% qaaiaadkhacqGH9aqpcaaIXaaabeaakiab+bcaGiabg2da9iab+bca% GiaadEgacaGGOaGaeqiUdeNaaiykaiaacYcaaaaa!6B9C!\[\begin{array}{l} \left. {\frac{\partial }{{\partial r}}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = f(\theta ), \\ \left. {\frac{{\partial ^2 \phi }}{{\partial \theta ^2 }}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = g(\theta ), \\ \end{array}\]prescribed on −α〈θ〈α, (where 2α is the wedge angle).
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  13. 13
    Gregory, R. D.
    Springer
    Published 1980
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x〉0 free of tractions, and on the end x=0 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\] % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\] where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even on x=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  14. 14
    Gregory, R. D. ; Gladwell, I.
    Springer
    Published 1982
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract A novel technique, the method of projection, is applied to the plane strain problems of determining the tractions, and stress intensity factors, at the fixed end of a cantilever beam under tension, bending or flexure at infinity. The method represents a useful alternative to the integral equation method of Erdogan, Gupta and Cook, and possesses certain advantages; in particular it is much easier to extend the present method to the more difficult dynamics case. An unusual feature of the method is that the required tractions are expanded as a series whose terms have the natural role of displacements rather than stresses.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  15. 15
    Gregory, R. D. ; Gladwell, I.
    Springer
    Published 1983
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract A semi-infinite plate of homogeneous isotropic, linearly elastic material occupies the region x≥0, |y|≤1, -∞〈z〈∞; the faces y=±1 are free of tractions, the end x=0 may be either fixed or traction free, and there are no body forces. A plane strain, time-harmonic, symmetric Rayleigh-Lamb wave propagates in the plate and is normally incident upon the end x=0. The problem of determining the resulting reflected wave field is solved by the “method of projection”, a method developed by the authors for solving corresponding problems in elastostatics. The solutions obtained for the dynamic problem fully satisfy the equations and boundary conditions of the linear theory, and (in the fixed-end case) proper account is taken of the singularities of the stress field at the corners x=0, y=±1. In each case the division of energy between the various reflected modes is found, and the dynamical stress intensity factors at the corners are determined in the fixed-end case. The existence of an “edge-mode” for the free-end case at a single isolated value of the frequency is confirmed, but a careful search revealed no similar phenomenon for the fixed-end case.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  16. 16
    Gregory, R. D.
    Springer
    Published 1983
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract The bi-orthogonality relation satisfied by the elastodynamic (or elastostatic) eigenfunctions of a cylindrical rod of general cross section is obtained by a simple argument. The relation is shown to depend only upon (i) the elastic reciprocal theorem, and (ii) the elastic symmetry of the cylinder in planes perpendicular to its generators.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  17. 17
    Gregory, R. D.
    Springer
    Published 1992
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract A homogeneous, isotropic plate has free faces and is “stretched” by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip. Furthermore, we prove that, as the plate thickness h→0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h). Corresponding results are also given for the case of plate “bending”, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  18. 18
    Gregory, R. D.
    Springer
    Published 1979
    Staff View
    ISSN:
    1573-2681
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Physics
    Notes:
    Abstract The bi-harmonic Green's functionG(r′,r) for the infinite strip region -1≤y≤1, -∞〈x〈∞, with the boundary conditionsG=∂G/∂y ony=±1, is obtained in integral form. It is shown thatG has an elegant bi-linear series representation in terms of the (Papkovich-Fadle) eigenfunctions for the strip. This representation is then used to show that any function ϕ bi-harmonic in arectangle, and satisfying the same boundary conditions asG, has a unique representation in the rectangle as an infinite sum of these eigenfunctions. For the case of the semi-infinite strip, we investigate conditions on ϕ sufficient to ensure that ϕ is exponentially small asx→∞. In particular it is proved that this is so, solely under the condition that ϕ be bounded asx→∞. A corresponding pattern of results is established for the wedge of general angle. The Green's function is obtained in integral form and expressed as a bilinear series of the (Williams) eigenfunctions. These eigenfunctions are proved to be complete for all functions bi-harmonic in anannular sector (and satisfying the same boundary conditions as the Green's function). As an application it is proved that if an elastostatic field exists in a corner region with ‘free-free’ boundaries, and with either (i) the total strain energy bounded, or (ii) the displacement field bounded, then this field has a unique representation as a sum of those Williams eigenfunctions whichindividually posess the properties (i), (ii). The methods used here extend to all other linear homogeneous boundary conditions for these geometries.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses