Search Results - (Author, Cooperation:R. Adalbert)

Showing 1 - 2 results of 2, query time: 0.14s Refine Results
  1. 1
    Staff View
    Publication Date:
    2012-06-09
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Animals ; Animals, Genetically Modified ; Apoptosis ; Armadillo Domain Proteins/analysis/*genetics/*physiology ; Axons/*physiology/ultrastructure ; Axotomy ; Cell Survival ; Cells, Cultured ; Cytoskeletal Proteins/analysis/*genetics/*physiology ; Denervation ; Drosophila/embryology/genetics/physiology ; Drosophila Proteins/analysis/*genetics/*physiology ; Mice ; Mutation ; Neurons/*physiology ; Sciatic Nerve/injuries/physiology ; Signal Transduction ; Superior Cervical Ganglion/cytology ; Tissue Culture Techniques ; *Wallerian Degeneration
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Staff View
    ISSN:
    1432-0533
    Keywords:
    Key words Calcium ; SOD-1 ; Knockout mouse ; Motoneuron ; Parvalbumin
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Medicine
    Notes:
    Abstract SOD-1-deficient mice demonstrate no loss of motoneurons but are still vulnerable to axotomy and ischemic insults. To investigate possible reasons for vulnerability of motoneuron populations, we studied changes in ultrastructural calcium distribution during maturation in spinal- and oculomotor neurons in SOD-1–/– mice. Between 3 and 11 months the cytoplasmic component of the intracellular calcium changed at a lower rate in spinal motoneurons and motor axon terminals in the interosseus muscle of SOD-1–/– animals compared to wild-type controls. No such dissimilarities were noted in the oculomotor system, or in mitochondrial calcium contents of either cell type. These data suggest that the lack of SOD-1 may be associated with vulnerability to insult by depletion of non-mitochondrial calcium stores selectively in motoneurons lacking parvalbumin and/or calbindin D28K.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses