Search Results - (Author, Cooperation:P. Veiga)
-
1F. T. Maestre ; J. L. Quero ; N. J. Gotelli ; A. Escudero ; V. Ochoa ; M. Delgado-Baquerizo ; M. Garcia-Gomez ; M. A. Bowker ; S. Soliveres ; C. Escolar ; P. Garcia-Palacios ; M. Berdugo ; E. Valencia ; B. Gozalo ; A. Gallardo ; L. Aguilera ; T. Arredondo ; J. Blones ; B. Boeken ; D. Bran ; A. A. Conceicao ; O. Cabrera ; M. Chaieb ; M. Derak ; D. J. Eldridge ; C. I. Espinosa ; A. Florentino ; J. Gaitan ; M. G. Gatica ; W. Ghiloufi ; S. Gomez-Gonzalez ; J. R. Gutierrez ; R. M. Hernandez ; X. Huang ; E. Huber-Sannwald ; M. Jankju ; M. Miriti ; J. Monerris ; R. L. Mau ; E. Morici ; K. Naseri ; A. Ospina ; V. Polo ; A. Prina ; E. Pucheta ; D. A. Ramirez-Collantes ; R. Romao ; M. Tighe ; C. Torres-Diaz ; J. Val ; J. P. Veiga ; D. Wang ; E. Zaady
American Association for the Advancement of Science (AAAS)
Published 2012Staff ViewPublication Date: 2012-01-17Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: *Biodiversity ; *Climate ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; Geography ; Geological Phenomena ; Models, Statistical ; *Plants ; Regression Analysis ; TemperaturePublished by: -
2J. M. Buescher ; W. Liebermeister ; M. Jules ; M. Uhr ; J. Muntel ; E. Botella ; B. Hessling ; R. J. Kleijn ; L. Le Chat ; F. Lecointe ; U. Mader ; P. Nicolas ; S. Piersma ; F. Rugheimer ; D. Becher ; P. Bessieres ; E. Bidnenko ; E. L. Denham ; E. Dervyn ; K. M. Devine ; G. Doherty ; S. Drulhe ; L. Felicori ; M. J. Fogg ; A. Goelzer ; A. Hansen ; C. R. Harwood ; M. Hecker ; S. Hubner ; C. Hultschig ; H. Jarmer ; E. Klipp ; A. Leduc ; P. Lewis ; F. Molina ; P. Noirot ; S. Peres ; N. Pigeonneau ; S. Pohl ; S. Rasmussen ; B. Rinn ; M. Schaffer ; J. Schnidder ; B. Schwikowski ; J. M. Van Dijl ; P. Veiga ; S. Walsh ; A. J. Wilkinson ; J. Stelling ; S. Aymerich ; U. Sauer
American Association for the Advancement of Science (AAAS)
Published 2012Staff ViewPublication Date: 2012-03-03Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: *Adaptation, Physiological ; Algorithms ; Bacillus subtilis/*genetics/*metabolism ; Bacterial Proteins/metabolism ; Computer Simulation ; Data Interpretation, Statistical ; Gene Expression Regulation, Bacterial ; *Gene Regulatory Networks ; Genome, Bacterial ; Glucose/*metabolism ; Malates/*metabolism ; Metabolic Networks and Pathways/*genetics ; Metabolome ; Metabolomics ; Models, Biological ; Operon ; Promoter Regions, Genetic ; Transcription Factors/metabolism ; Transcription, GeneticPublished by: -
3Staff View
ISSN: 1089-7658Source: AIP Digital ArchiveTopics: MathematicsPhysicsNotes: We consider a hierarchical N-component classical vector model on a three-dimensional lattice Z3, for large N. The model differs from the usual one in that the kernel of the inverse Laplace operator is nontranslational invariant but has matrix elements which are positive and exhibit the same falloff as the inverse Laplacian in Z3. We introduce a renormalization group transformation and for N=∞, corresponding to the leading order of the 1/N expansion, we construct explicitly a nonzero fixed point for this transformation and also obtain some correlation functions. The two-point function has canonical decay. For 1(very-much-less-than)N〈∞, we obtain the fixed point and the two-point function in the first 1/N approximation. Canonical decay is still verified, in contrast to what is reported for the full model. © 1998 American Institute of Physics.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1572-9613Keywords: Large-N vector model ; correlation functions ; renormalization groupSource: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract We consider the correlation functions for a hierarchical N-component classical vector model in three dimensions. For N = ∞, we find explicitly the eigenvalues and global eigenfunctions of the linearized renormalization group transformation. In a very direct way, this yields the correlation functions for the N = ∞ model. In particular, we check that the two-point function has canonical decay.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1432-0916Source: Springer Online Journal Archives 1860-2000Topics: MathematicsPhysicsNotes: Abstract We examine a family of probability measures onR L with real parameter ζ〉0 and integer parametersN,L〉0. Each such measure is equivalent to the lattice version of a one-dimensional discrete chiral-invariant fermionic quantum field theory with quartic interaction, withN the number of flavours. After applying the Matthews-Salam formula, the model becomes a statistical mechanical model of a chain of continuous Gaussian spins, coupled with a certain non-standard weight function. Finally, the model can also be considered as a probability measure on the set of tridiagonal matrices with fixed off-diagonal and random diagonal entries. Our analysis shows how to develop an asymptotic expansion in 1/N, valid for allL and ζ, for the fundamental expectation values. From this it follows that the two point fermion correlation function decays with a mass which agrees to the leading order in 1/N with the mean field value calculated by the argument of Gross-Neveu. The analytical technique we develop in essence combines a transfer matrix method with the Laplace method (steepest descent) for asymptotics of integrals.Type of Medium: Electronic ResourceURL: