Search Results - (Author, Cooperation:P. S. Ray)
-
1H. J. Pletsch ; L. Guillemot ; H. Fehrmann ; B. Allen ; M. Kramer ; C. Aulbert ; M. Ackermann ; M. Ajello ; A. de Angelis ; W. B. Atwood ; L. Baldini ; J. Ballet ; G. Barbiellini ; D. Bastieri ; K. Bechtol ; R. Bellazzini ; A. W. Borgland ; E. Bottacini ; T. J. Brandt ; J. Bregeon ; M. Brigida ; P. Bruel ; R. Buehler ; S. Buson ; G. A. Caliandro ; R. A. Cameron ; P. A. Caraveo ; J. M. Casandjian ; C. Cecchi ; O. Celik ; E. Charles ; R. C. Chaves ; C. C. Cheung ; J. Chiang ; S. Ciprini ; R. Claus ; J. Cohen-Tanugi ; J. Conrad ; S. Cutini ; F. D'Ammando ; C. D. Dermer ; S. W. Digel ; P. S. Drell ; A. Drlica-Wagner ; R. Dubois ; D. Dumora ; C. Favuzzi ; E. C. Ferrara ; A. Franckowiak ; Y. Fukazawa ; P. Fusco ; F. Gargano ; N. Gehrels ; S. Germani ; N. Giglietto ; F. Giordano ; M. Giroletti ; G. Godfrey ; I. A. Grenier ; M. H. Grondin ; J. E. Grove ; S. Guiriec ; D. Hadasch ; Y. Hanabata ; A. K. Harding ; P. R. den Hartog ; M. Hayashida ; E. Hays ; A. B. Hill ; X. Hou ; R. E. Hughes ; G. Johannesson ; M. S. Jackson ; T. Jogler ; A. S. Johnson ; W. N. Johnson ; J. Kataoka ; M. Kerr ; J. Knodlseder ; M. Kuss ; J. Lande ; S. Larsson ; L. Latronico ; M. Lemoine-Goumard ; F. Longo ; F. Loparco ; M. N. Lovellette ; P. Lubrano ; F. Massaro ; M. Mayer ; M. N. Mazziotta ; J. E. McEnery ; J. Mehault ; P. F. Michelson ; W. Mitthumsiri ; T. Mizuno ; M. E. Monzani ; A. Morselli ; I. V. Moskalenko ; S. Murgia ; T. Nakamori ; R. Nemmen ; E. Nuss ; M. Ohno ; T. Ohsugi ; N. Omodei ; M. Orienti ; E. Orlando ; F. de Palma ; D. Paneque ; J. S. Perkins ; F. Piron ; G. Pivato ; T. A. Porter ; S. Raino ; R. Rando ; P. S. Ray ; M. Razzano ; A. Reimer ; O. Reimer ; T. Reposeur ; S. Ritz ; R. W. Romani ; C. Romoli ; D. A. Sanchez ; P. M. Saz Parkinson ; A. Schulz ; C. Sgro ; E. do Couto e Silva ; E. J. Siskind ; D. A. Smith ; G. Spandre ; P. Spinelli ; D. J. Suson ; H. Takahashi ; T. Tanaka ; J. B. Thayer ; J. G. Thayer ; D. J. Thompson ; L. Tibaldo ; M. Tinivella ; E. Troja ; T. L. Usher ; J. Vandenbroucke ; V. Vasileiou ; G. Vianello ; V. Vitale ; A. P. Waite ; B. L. Winer ; K. S. Wood ; M. Wood ; Z. Yang ; S. Zimmer
American Association for the Advancement of Science (AAAS)
Published 2012Staff ViewPublication Date: 2012-11-01Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsPublished by: -
2A. A. Abdo ; M. Ackermann ; M. Ajello ; A. Allafort ; L. Baldini ; J. Ballet ; G. Barbiellini ; D. Bastieri ; K. Bechtol ; R. Bellazzini ; B. Berenji ; R. D. Blandford ; E. D. Bloom ; E. Bonamente ; A. W. Borgland ; A. Bouvier ; T. J. Brandt ; J. Bregeon ; A. Brez ; M. Brigida ; P. Bruel ; R. Buehler ; S. Buson ; G. A. Caliandro ; R. A. Cameron ; A. Cannon ; P. A. Caraveo ; J. M. Casandjian ; O. Celik ; E. Charles ; A. Chekhtman ; C. C. Cheung ; J. Chiang ; S. Ciprini ; R. Claus ; J. Cohen-Tanugi ; L. Costamante ; S. Cutini ; F. D'Ammando ; C. D. Dermer ; A. de Angelis ; A. de Luca ; F. de Palma ; S. W. Digel ; E. do Couto e Silva ; P. S. Drell ; A. Drlica-Wagner ; R. Dubois ; D. Dumora ; C. Favuzzi ; S. J. Fegan ; E. C. Ferrara ; W. B. Focke ; P. Fortin ; M. Frailis ; Y. Fukazawa ; S. Funk ; P. Fusco ; F. Gargano ; D. Gasparrini ; N. Gehrels ; S. Germani ; N. Giglietto ; F. Giordano ; M. Giroletti ; T. Glanzman ; G. Godfrey ; I. A. Grenier ; M. H. Grondin ; J. E. Grove ; S. Guiriec ; D. Hadasch ; Y. Hanabata ; A. K. Harding ; K. Hayashi ; M. Hayashida ; E. Hays ; D. Horan ; R. Itoh ; G. Johannesson ; A. S. Johnson ; T. J. Johnson ; D. Khangulyan ; T. Kamae ; H. Katagiri ; J. Kataoka ; M. Kerr ; J. Knodlseder ; M. Kuss ; J. Lande ; L. Latronico ; S. H. Lee ; M. Lemoine-Goumard ; F. Longo ; F. Loparco ; P. Lubrano ; G. M. Madejski ; A. Makeev ; M. Marelli ; M. N. Mazziotta ; J. E. McEnery ; P. F. Michelson ; W. Mitthumsiri ; T. Mizuno ; A. A. Moiseev ; C. Monte ; M. E. Monzani ; A. Morselli ; I. V. Moskalenko ; S. Murgia ; T. Nakamori ; M. Naumann-Godo ; P. L. Nolan ; J. P. Norris ; E. Nuss ; T. Ohsugi ; A. Okumura ; N. Omodei ; J. F. Ormes ; M. Ozaki ; D. Paneque ; D. Parent ; V. Pelassa ; M. Pepe ; M. Pesce-Rollins ; M. Pierbattista ; F. Piron ; T. A. Porter ; S. Raino ; R. Rando ; P. S. Ray ; M. Razzano ; A. Reimer ; O. Reimer ; T. Reposeur ; S. Ritz ; R. W. Romani ; H. F. Sadrozinski ; D. Sanchez ; P. M. Saz Parkinson ; J. D. Scargle ; T. L. Schalk ; C. Sgro ; E. J. Siskind ; P. D. Smith ; G. Spandre ; P. Spinelli ; M. S. Strickman ; D. J. Suson ; H. Takahashi ; T. Takahashi ; T. Tanaka ; J. B. Thayer ; D. J. Thompson ; L. Tibaldo ; D. F. Torres ; G. Tosti ; A. Tramacere ; E. Troja ; Y. Uchiyama ; J. Vandenbroucke ; V. Vasileiou ; G. Vianello ; V. Vitale ; P. Wang ; K. S. Wood ; Z. Yang ; M. Ziegler
American Association for the Advancement of Science (AAAS)
Published 2011Staff ViewPublication Date: 2011-01-08Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsPublished by: -
3Staff View
ISSN: 1573-2673Source: Springer Online Journal Archives 1860-2000Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision MechanicsNotes: Abstract This paper presents a large anisotropic damage theory of continuum damage mechanics. It is developed via a new hypothesis of incremental complementary elastic energy equivalence. This hypothesis is more versatile and accurate if compared to the original hypothesis of total complementary energy equivalence. To model the large damage, we assumed that it occurs as a series of incremental small damage. An expression for the damage effect tensor M(D) for large damage is derived. It is shown that when the damage is small, that is, D i≪1, the proposed large damage theory reduces to the small damage model of Chow and Wang [1]. To demonstrate this large damage theory, it is applied to model the following cases: (a) uniaxial tension, (b) pure torsion and (c) elastic perfectly-plastic material behavior. In all three cases, the results clearly show that when the damage is small, Chow and Wang's model is recovered. However, for large damage, there are significant differences in predictions. Since this large damage theory is formulated on the basis of the incremental complementary energy, it is applicable to a wider range of problems.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1573-269XKeywords: resonant-separatrix web ; stochastic layer ; energy spectrum ; Duffing oscillatorSource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract The excitation strength for the onset of a new resonant-separatrix in the stochastic layer of the Duffing oscillator is predicted through the energy change in minimum and maximum energy spectra. The widths of stochastic layers are estimated through the use of the maximum and minimum energy which can be measured experimentally. The energy spectrum approach, rather than the Poincaré mapping section method, is applied to detect the resonant-separatrix web in the stochastic layer, and it is applicable for the onset of resonant layers in nonlinear dynamic systems. The analytical condition for the onset of a new resonant-separatrix in the stochastic layer is also presented. The analytical and numerical predictions are in good agreement.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1573-269XKeywords: Bouncing ball ; vibrating table ; stability and bifurcation ; period-1 motionSource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract The dynamical behavior of a bouncing ball with a sinusoidally vibrating table is revisited in this paper. Based on the equation of motion of the ball, the mapping for period-1 motion is constructured and thereby allowing the stability and bifurcation conditions to be determined. Comparison with Holmes's solution [1] shows that our range of stable motion is wider, and through numerical simulations, our stability result is observed to be more accurate. The Poincaré mapping sections of the unstable period-1 motion indicate the existence of identical Smale horseshoe structures and fractals. For a better understanding of the stable and chaotic motions, plots of the physical motion of the bouncing ball superimposed on the vibration of the table are presented.Type of Medium: Electronic ResourceURL: -
6Zeglinski, Gordon W. ; Han, Ray P. S. ; Aitchison, Peter
Chichester [u.a.] : Wiley-Blackwell
Published 1994Staff ViewISSN: 0029-5981Keywords: Engineering ; Engineering GeneralSource: Wiley InterScience Backfile Collection 1832-2000Topics: MathematicsTechnologyNotes: This paper presents a new method of writing finite element programs using the programming approach known as object oriented programming (OOP). More specifically, the C++ language is used to illustrate the key OOP concepts. In addition to the OOP finite element examples, a detailed discussion of OOP techniques in the creation of a generalized matrix library is presented. The C++ language is used in this paper because it is more suited to numerical programs than a pure OOP language such as Smalltalk. The efficiency, flexibility and maintainability of the C++ program are shown to be superior to a comparable version written in a non-OOP language, such as FORTRAN. The matrix library contains a number of matrix objects that are useful for specific types of matrix related problems. Different sparse storage schemes are implemented for each different type of matrix. A large number of functions are provided for each matrix type in order to implement many common matrix operations. In applications, the OOP paradigm allows the functions to be used in a very simple way that is common to all the matrix types. The sample finite element code included in this paper is primarily intended to illustrate the key concepts of OOP style. This paper explains how to set up a finite element hierarchy, material hierarchy and how to integrate this with the matrix hierarchy (library). Thus, a completely object oriented finite element program can be written.Additional Material: 14 Ill.Type of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 0029-5981Keywords: Engineering ; Engineering GeneralSource: Wiley InterScience Backfile Collection 1832-2000Topics: MathematicsTechnologyNotes: A general treatment is presented for modelling the dynamics of a flexible multibody system, using a lumped mass finite element approach. The system topology considered here is defined as an arbitrary combination of both rigid and flexible bodies, connected together by joints that permit translation and compliance, in a general tree configuration. An extension to handle closed loop kinematic chains is also indicated. Kane's theory of generalized speeds, which is based on the Lagrange-D'Alembert principle, is used to derive the equations of motion, and this results in a very efficient computer oriented methodology for solving the dynamics of such large mechanical systems. To facilitate numerical computations, these dynamical equations are transformed into a system of first-order differential equations for an explicit formulation of the problem. The accuracy of the proposed formulation is assessed via three examples with known solutions. The results obtained indicate the method is accurate, efficient and versatile for the analysis of a general, flexible multibody system.Additional Material: 10 Ill.Type of Medium: Electronic ResourceURL: -
8Staff View
ISSN: 0029-5981Keywords: exact dynamic ; stiffness ; arbitrary beams ; natural frequencies ; Engineering ; Numerical Methods and ModelingSource: Wiley InterScience Backfile Collection 1832-2000Topics: MathematicsTechnologyNotes: In this paper, the exact dynamic stiffness matrix is derived for the transverse vibration of beams whose cross-sectional area and moment of inertia vary in accordance to any two arbitrary real-number powers. This variation represents a very large class of arbitrary varying beams and thus, fills the void currently existing in this area of research. With this approach, most beams can be modelled by just one element, and for beams having abrupt profile changes or with very complex profiles, they can be divided into separate distinct parts, with each of the part modelled by just one element, and then assembled together. The method is exact; however, the accuracy of the results depends only on the solver used to solve the exact frequency equation. To demonstrate the procedure, beams of non-linearly varying circular and elliptical cross-sections, and a combination beam consisting of a linear-tapered section, a uniform section and a non-linearly varying-section are analysed for their natural frequencies. Since there are no known solutions for these structures, comparison with finite element results was made and very good agreement was observed. © 1997 by John Wiley & Sons, Ltd.Additional Material: 4 Ill.Type of Medium: Electronic Resource