Search Results - (Author, Cooperation:P. B. Price)
-
1M. G. Aartsen ; R. Abbasi ; Y. Abdou ; M. Ackermann ; J. Adams ; J. A. Aguilar ; M. Ahlers ; D. Altmann ; J. Auffenberg ; X. Bai ; M. Baker ; S. W. Barwick ; V. Baum ; R. Bay ; J. J. Beatty ; S. Bechet ; J. Becker Tjus ; K. H. Becker ; M. L. Benabderrahmane ; S. BenZvi ; P. Berghaus ; D. Berley ; E. Bernardini ; A. Bernhard ; D. Bertrand ; D. Z. Besson ; G. Binder ; D. Bindig ; M. Bissok ; E. Blaufuss ; J. Blumenthal ; D. J. Boersma ; S. Bohaichuk ; C. Bohm ; D. Bose ; S. Boser ; O. Botner ; L. Brayeur ; H. P. Bretz ; A. M. Brown ; R. Bruijn ; J. Brunner ; M. Carson ; J. Casey ; M. Casier ; D. Chirkin ; A. Christov ; B. Christy ; K. Clark ; F. Clevermann ; S. Coenders ; S. Cohen ; D. F. Cowen ; A. H. Cruz Silva ; M. Danninger ; J. Daughhetee ; J. C. Davis ; M. Day ; C. De Clercq ; S. De Ridder ; P. Desiati ; K. D. de Vries ; M. de With ; T. DeYoung ; J. C. Diaz-Velez ; M. Dunkman ; R. Eagan ; B. Eberhardt ; B. Eichmann ; J. Eisch ; R. W. Ellsworth ; S. Euler ; P. A. Evenson ; O. Fadiran ; A. R. Fazely ; A. Fedynitch ; J. Feintzeig ; T. Feusels ; K. Filimonov ; C. Finley ; T. Fischer-Wasels ; S. Flis ; A. Franckowiak ; K. Frantzen ; T. Fuchs ; T. K. Gaisser ; J. Gallagher ; L. Gerhardt ; L. Gladstone ; T. Glusenkamp ; A. Goldschmidt ; G. Golup ; J. G. Gonzalez ; J. A. Goodman ; D. Gora ; D. T. Grandmont ; D. Grant ; A. Gross ; C. Ha ; A. Haj Ismail ; P. Hallen ; A. Hallgren ; F. Halzen ; K. Hanson ; D. Heereman ; D. Heinen ; K. Helbing ; R. Hellauer ; S. Hickford ; G. C. Hill ; K. D. Hoffman ; R. Hoffmann ; A. Homeier ; K. Hoshina ; W. Huelsnitz ; P. O. Hulth ; K. Hultqvist ; S. Hussain ; A. Ishihara ; E. Jacobi ; J. Jacobsen ; K. Jagielski ; G. S. Japaridze ; K. Jero ; O. Jlelati ; B. Kaminsky ; A. Kappes ; T. Karg ; A. Karle ; J. L. Kelley ; J. Kiryluk ; J. Klas ; S. R. Klein ; J. H. Kohne ; G. Kohnen ; H. Kolanoski ; L. Kopke ; C. Kopper ; S. Kopper ; D. J. Koskinen ; M. Kowalski ; M. Krasberg ; K. Krings ; G. Kroll ; J. Kunnen ; N. Kurahashi ; T. Kuwabara ; M. Labare ; H. Landsman ; M. J. Larson ; M. Lesiak-Bzdak ; M. Leuermann ; J. Leute ; J. Lunemann ; J. Madsen ; G. Maggi ; R. Maruyama ; K. Mase ; H. S. Matis ; F. McNally ; K. Meagher ; M. Merck ; T. Meures ; S. Miarecki ; E. Middell ; N. Milke ; J. Miller ; L. Mohrmann ; T. Montaruli ; R. Morse ; R. Nahnhauer ; U. Naumann ; H. Niederhausen ; S. C. Nowicki ; D. R. Nygren ; A. Obertacke ; S. Odrowski ; A. Olivas ; A. O'Murchadha ; L. Paul ; J. A. Pepper ; C. Perez de los Heros ; C. Pfendner ; D. Pieloth ; E. Pinat ; J. Posselt ; P. B. Price ; G. T. Przybylski ; L. Radel ; M. Rameez ; K. Rawlins ; P. Redl ; R. Reimann ; E. Resconi ; W. Rhode ; M. Ribordy ; M. Richman ; B. Riedel ; J. P. Rodrigues ; C. Rott ; T. Ruhe ; B. Ruzybayev ; D. Ryckbosch ; S. M. Saba ; T. Salameh ; H. G. Sander ; M. Santander ; S. Sarkar ; K. Schatto ; F. Scheriau ; T. Schmidt ; M. Schmitz ; S. Schoenen ; S. Schoneberg ; A. Schonwald ; A. Schukraft ; L. Schulte ; O. Schulz ; D. Seckel ; Y. Sestayo ; S. Seunarine ; R. Shanidze ; C. Sheremata ; M. W. Smith ; D. Soldin ; G. M. Spiczak ; C. Spiering ; M. Stamatikos ; T. Stanev ; A. Stasik ; T. Stezelberger ; R. G. Stokstad ; A. Stossl ; E. A. Strahler ; R. Strom ; G. W. Sullivan ; H. Taavola ; I. Taboada ; A. Tamburro ; A. Tepe ; S. Ter-Antonyan ; G. Tesic ; S. Tilav ; P. A. Toale ; S. Toscano ; E. Unger ; M. Usner ; N. van Eijndhoven ; A. Van Overloop ; J. van Santen ; M. Vehring ; M. Voge ; M. Vraeghe ; C. Walck ; T. Waldenmaier ; M. Wallraff ; C. Weaver ; M. Wellons ; C. Wendt ; S. Westerhoff ; N. Whitehorn ; K. Wiebe ; C. H. Wiebusch ; D. R. Williams ; H. Wissing ; M. Wolf ; T. R. Wood ; K. Woschnagg ; D. L. Xu ; X. W. Xu ; J. P. Yanez ; G. Yodh ; S. Yoshida ; P. Zarzhitsky ; J. Ziemann ; S. Zierke ; M. Zoll
American Association for the Advancement of Science (AAAS)
Published 2013Staff ViewPublication Date: 2013-11-23Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsPublished by: -
2Packard, R. E. ; Pekola, J. P. ; Price, P. B. ; Spohr, R. N. R. ; Westmacott, K. H. ; Yu-Qun, Zhu
[S.l.] : American Institute of Physics (AIP)
Published 1986Staff ViewISSN: 1089-7623Source: AIP Digital ArchiveTopics: PhysicsElectrical Engineering, Measurement and Control TechnologyNotes: A method for generating single pores down to 0.1 μm diameter in the center of a large circular foil is described, based on nuclear tracks. The foil is framed by a tension ring which enables one to handle the foils in a well-defined precise way. The single pore has a lateral displacement of ±0.1 mm with respect to the tension ring center. The foils used are polycarbonate of the type Makrofol and have thicknesses between 2 and 10 μm. For calibration of the single pore diameters, multiple nuclear tracks between 0.1 and 3.5 μm diameter are etched and observed by microscopy. The microscopic observations are compared with gas-flow measurements, using two alternative methods: multiple holes are tested under viscous flow conditions of N2 gas at normal temperature and pressure; single holes are tested under collisionless flow conditions of 4He gas at liquid-nitrogen temperature, using a capacitance method.Type of Medium: Electronic ResourceURL: -
3Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] We define three quantities which characterize the ability of a chemical reagent to reveal the track of an ionizing particle: the general etching rate, i 〉G, is the linear rate of dissolution of the surface of the solid, which depends on the reagent and the temperature; the track etching rate, i ...Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] Because of their different response mechanisms, not all types of detectors are equally susceptible to energy loss fluctuations. This follows from the variance in the AE1 signal in a detector being proportional to em, the maximum energy transfer to which a detector is sensitive1'2. As the actual ...Type of Medium: Electronic ResourceURL: -
5FLEISCHER, R. L. ; PRICE, P. B. ; WALKER, R. M. ; LEAKEY, L. S. B.
[s.l.] : Nature Publishing Group
Published 1965Staff ViewISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] In brief, the method depends on the fact that most materials contain small quantities of uranium, which undergoes spontaneous fission, thereby creating damage tracks which are easily revealed by chemical etching. For samples less than about 109 years old the age is proportional to the density of ...Type of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] PREVIOUS electron microscope studies have shown that fission fragments from uranium-235 produce tracks in mica1"3 and other minerals4'5. In those experiments the fission fragments were produced by irradiating a uranium source with thermal neutrons from a nuclear reactor. In this article we report ...Type of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 1434-601XKeywords: 25.70.NpSource: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract We report the first measurement of the total charge-loss cross section σtot=σem+σnuc and partial cross sections (for ΔZ=1, 2, ..., 9) of 11.4 A GeV197Au nuclei in various targets. The large Coulomb barrier for Au reduces the electromagnetic contribution σem in a Pb target to only 18% of σnuc, compared with ∼ 70% for 14.5 A GeV28Si and 120% for 200 A GeV32S. With σem taken to be ∝Z T 1.8 , σnuc can be fitted with σnuc=α(A P 1/3 +A T 1/3 −b)2, with b=0.83 and α=59 mb, essentially the same as found at energies of 1 to 2 A GeV. Electromagnetic partial cross sections for ΔZ=1 exceed ∼ 40 mb in the Pb, Sn, Cu, and Fe targets and are substantial for larger values ofΔZ in the heavier targets.Type of Medium: Electronic ResourceURL: -
8Staff View
ISSN: 1572-9591Source: Springer Online Journal Archives 1860-2000Topics: Energy, Environment Protection, Nuclear Power EngineeringType of Medium: Electronic ResourceURL: -
9Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] Figure 1 shows the geometry of the experiment. I obtained a - 15-cm3 single crystal of LiD (grown by M. Delong, University of Utah) and cleaved it vertically along (100) planes into -100 thin plates. The bottom of the crystal was supported 0.9 mm above the surface of the CR-39 plastic detector, ...Type of Medium: Electronic ResourceURL: -
10Lowder, D. M. ; Miller, T. ; Price, P. B. ; Westphal, A. ; Barwick, S. W. ; Halzen, F. ; Morse, R.
[s.l.] : Nature Publishing Group
Published 1991Staff ViewISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] Neutrinos would be detected by the standard technique of observing the Cerenkov light emitted by upward-moving muons, produced by neutrinos interacting in or below the detector. At these high energies, the direction of the muon produced is within 1° of the direction of the parent neutrino, so ...Type of Medium: Electronic ResourceURL: -
11Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] Price et al.7 showed that a supermassive monopole with speed v^ 0.001 c such as is predicted by grand unified theories would produce a detectable radiation-damage track in mica provided it first attached to itself a nucleus with a large magnetic moment such as 27A1 while passing through the Earth's ...Type of Medium: Electronic ResourceURL: -
12Price, P. B. ; Lowder, D. M. ; Westphal, A. J. ; Wilkes, R. D. ; Brennen, R. A. ; Afanasyev, V. G. ; Akimov, V. V. ; Rodin, V. G. ; Baryshnikov, G. K. ; Gorshkov, L. A. ; Shvets, N. I. ; Tsigankov, O. S.
Springer
Published 1992Staff ViewISSN: 1572-946XSource: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract The goals of the TREK experiment, now in place on the MIR Space Station, are to resolve and measure the composition of both odd-Z and even-Z cosmic-ray nuclei up to uranium, to measure the isotopic composition of Fe-group nuclei, and to search for transuranic nucleic and exotic particles such as strangelets. To collect tracks of ultraheavy cosmic rays, exterior panels holding an array of BP-1 phosphate glass 1.2m2 in area and 16 plates thick are now mounted outside the Kvant-2 module on MIR. Heaters and relays regulate the temperature of the glass at 25°±5°C. The detectors will record ∼103 cosmic-ray tracks withZ≥50 during ∼2.5 years. An interior panel consisting of an array 0.09 m2 in area and 32 plates thick and mounted on the inside wall of the Soyuz spacecraft (attached to the Space Station) will collect tracks of about 13000 Fe and 500 Ni nuclei.Type of Medium: Electronic ResourceURL: -
13Ahlen, S. P. ; Barwick, S. ; Beatty, J. J. ; Bower, C. R. ; Gerbier, G. ; Heinz, R. M. ; Lowder, D. ; McKee, S. ; Mufson, S. ; Musser, J. A. ; Price, P. B. ; Salamon, M. H. ; Tarle, G. ; Tomasch, A. ; Zhou, B.
Springer
Published 1989Staff ViewISSN: 1572-9540Source: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract Kinematics predicts the severe suppression of low-energy (〈1 GeV) secondary antiprotons in the Galactic cosmic rays. Thus the observation several years ago of a finite flux of low-energy antiprotons could not be explained with existing models of cosmic ray propagation, which led to a plethora of theoretical speculation. We have recently flown a balloon-borne instrument to measure the energy spectrum of cosmic-ray $$\bar p's$$ , and have found no antiprotons in the energy interval 200–640 MeV (corrected to the top of the atmosphere). This yields an upper limit to the $$\bar p/p$$ ratio of 5.5×10−5 (90% confidence level), well below and hence contradicting the earlier result.Type of Medium: Electronic ResourceURL: -
14Pekola, J. P. ; Davis, J. C. ; Yu-Qun, Zhu ; Spohr, R. N. R. ; Price, P. B. ; Packard, R. E.
Springer
Published 1987Staff ViewISSN: 1573-7357Source: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract We report on an investigation into confined geometry effects and critical currents of superfluid3He in a single circular cylindrical channel. The diameter of the channel, 0.7 µm, is of the order of the (temperature-dependent) coherence length and its aspect ratio is ∼10. The reduction of the critical temperature demonstrates diffuse scattering on the solid walls of the microchannel. Using the Ginzburg-Landau formulation, we derive a model for the critical current and the critical temperature in a small, infinitely long, cylindrical channel with a circular cross section. The measured reductions of these quantities are in reasonable agreement with the predictions of the model.Type of Medium: Electronic ResourceURL: -
15Staff View
ISSN: 1572-9672Source: Springer Online Journal Archives 1860-2000Topics: PhysicsNotes: Abstract The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above ∼15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z 〉 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.Type of Medium: Electronic ResourceURL: