Search Results - (Author, Cooperation:M. Frontini)
-
1S. Saeed ; J. Quintin ; H. H. Kerstens ; N. A. Rao ; A. Aghajanirefah ; F. Matarese ; S. C. Cheng ; J. Ratter ; K. Berentsen ; M. A. van der Ent ; N. Sharifi ; E. M. Janssen-Megens ; M. Ter Huurne ; A. Mandoli ; T. van Schaik ; A. Ng ; F. Burden ; K. Downes ; M. Frontini ; V. Kumar ; E. J. Giamarellos-Bourboulis ; W. H. Ouwehand ; J. W. van der Meer ; L. A. Joosten ; C. Wijmenga ; J. H. Martens ; R. J. Xavier ; C. Logie ; M. G. Netea ; H. G. Stunnenberg
American Association for the Advancement of Science (AAAS)
Published 2014Staff ViewPublication Date: 2014-09-27Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Binding Sites/genetics ; Cell Differentiation/*genetics ; Deoxyribonuclease I/chemistry ; *Epigenesis, Genetic ; Genomic Imprinting ; Humans ; Immunity, Innate/*genetics ; Immunologic Memory ; Inflammasomes/genetics/immunology ; Macrophages/*cytology/immunology ; Mice ; Monocytes/*cytology/immunology ; Transcription Factors/metabolism ; beta-Glucans/immunologyPublished by: -
2L. Chen ; M. Kostadima ; J. H. Martens ; G. Canu ; S. P. Garcia ; E. Turro ; K. Downes ; I. C. Macaulay ; E. Bielczyk-Maczynska ; S. Coe ; S. Farrow ; P. Poudel ; F. Burden ; S. B. Jansen ; W. J. Astle ; A. Attwood ; T. Bariana ; B. de Bono ; A. Breschi ; J. C. Chambers ; F. A. Choudry ; L. Clarke ; P. Coupland ; M. van der Ent ; W. N. Erber ; J. H. Jansen ; R. Favier ; M. E. Fenech ; N. Foad ; K. Freson ; C. van Geet ; K. Gomez ; R. Guigo ; D. Hampshire ; A. M. Kelly ; H. H. Kerstens ; J. S. Kooner ; M. Laffan ; C. Lentaigne ; C. Labalette ; T. Martin ; S. Meacham ; A. Mumford ; S. Nurnberg ; E. Palumbo ; B. A. van der Reijden ; D. Richardson ; S. J. Sammut ; G. Slodkowicz ; A. U. Tamuri ; L. Vasquez ; K. Voss ; S. Watt ; S. Westbury ; P. Flicek ; R. Loos ; N. Goldman ; P. Bertone ; R. J. Read ; S. Richardson ; A. Cvejic ; N. Soranzo ; W. H. Ouwehand ; H. G. Stunnenberg ; M. Frontini ; A. Rendon
American Association for the Advancement of Science (AAAS)
Published 2014Staff ViewPublication Date: 2014-09-27Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: *Alternative Splicing ; Cell Lineage/*genetics ; Genetic Variation ; Hematopoiesis/*genetics ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; NFI Transcription Factors/genetics/metabolism ; RNA-Binding Proteins/metabolism ; Thrombopoiesis/genetics ; TranscriptomePublished by: -
3Staff View
ISSN: 1089-7658Source: AIP Digital ArchiveTopics: MathematicsPhysicsNotes: The generalized moment problem in the framework of the maximum entropy approach is considered. A proof for the existence conditions of the solution is provided. © 1998 American Institute of Physics.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1089-7658Source: AIP Digital ArchiveTopics: MathematicsPhysicsNotes: A necessary and sufficient condition for the existence of the maximum entropy (ME) function, defined in an infinite or semiinfinite interval, is provided. The conclusions reached show that, except in a few particular cases, the necessary and sufficient conditions for the existence of maximum entropy function are identical to the conditions for the solution of the moment problem when the first M+1 moments are assigned. Even if the conclusions reached are very similar to the Hausdorff case, the specificity of the Hamburger and Stieltjes cases demands a different handling. A sufficient condition for the entropy convergence of the resulting sequence of maximum entropy estimators to the entropy of the recovering function is also provided. © 1994 American Institute of Physics.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1572-9265Source: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract In a previous paper [4] the following problem was considered:find, in the class of Fourier polynomials of degree n, the one which minimizes the functional: (0.1) $$J^* [F_n ,\sigma ] = \left\| {f - F_n } \right\|^2 + \sum\limits_{r = 1}^\infty {\frac{{\sigma ^r }}{{r!}}} \left\| {F_n^{(r)} } \right\|^2$$ , where ∥·∥ is theL 2 norm,F n (r) is therth derivative of the Fourier polynomialF n (x), andf(x) is a given function with Fourier coefficientsc k . It was proved that the optimal polynomial has coefficientsc k * given by (0.2) $$c_k^* = c_k e^{ - \sigma k^2 } ; k = 0, \pm ,..., \pm n$$ . In this paper we consider the more general functional (0.3) $$\hat J[F_n ,\sigma _r ] = \left\| {f - F_n } \right\|^2 + \sum\limits_{r = 1}^\infty {\sigma _r \left\| {F_n^{(r)} } \right\|^2 }$$ , which reduces to (0.1) forσ r =σ r /r!. We will prove that the classical sigma-factor method for the regularization of Fourier polynomials may be obtained by minimizing the functional (0.3) for a particular choice of the weightsσ r . This result will be used to propose a motivated numerical choice of the parameterσ in (0.1).Type of Medium: Electronic ResourceURL: